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A B S T R A C T 

Protein is an important component of life. Protein modification after 

translation enriches the diversity of protein, regulates the structure 

and function of a protein, and participates in more life processes. 

Recent studies have found that post-translational modifications of 

proteins can regulate the occurrence and development of tumors. 

The human immune system should be able to eliminate cancer cells 

through an acquired immune response executed by T cells. 

However, clinical detection of cancer cells often results from the 

failure of immune surveillance. Therefore, relieving immune 

suppression and restoring antitumor immune response provides the 

possibility for tumor therapy. Tumor immunotherapy refers to 

exogenous intervention of the body's immune system, restart and 

maintain the "tumor-immune" cycle, restore and improve the anti-

immune response of the group, strengthen the recognition and 

killing ability of tumor cells, so as to achieve the therapeutic effect of 

controlling or even clarifying the tumor specifically. Here, we review 

current knowledge of the current status of tumor immunotherapy 

and the types and effects of post-translational modifications of 

proteins, hoping to improve new ideas for the types of therapies. 
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1. Introduction 

Tumor immunotherapy refers to 
exogenous intervention of the body's immune 
system, restarting and maintaining the 
"tumor-immune" cycle, restoring and 
improving the anti-immune response of the 
group, and strengthening the recognition and 
killing ability of tumor cells, to achieve the 
therapeutic effect of controlling or even 
clarifying the tumor specifically[1, 2]. Current 
developments and improvements in cancer 
immunotherapy (CIT) aim to restore and 
enhance antitumor immunity by identifying 
and forcefully eradicating cancer cells and 
preventing metastasis from primary tumors. 
Immunotherapy has led to a paradigm change 
in the treatment of some malignancies, 
providing lasting, long-term responses for 
patients with advanced cancer. Despite the 

rapid development and success of CIT 
therapeutics, there are still challenges and 
problems with the limited efficacy of CIT in 
many tumor types. Targeting these tumor 
immune interactions could increase the 
effectiveness of other cancer therapies[3, 4] 

In recent years, tumor immunotherapy has 
become a research hotspot due to its 
characteristics of enhancing the immune 
system, being suitable for a variety of tumors, 
and having long-lasting responses. The 
emergence of tumor immunotherapy has 
changed cancer treatment and brought good 
news to a vast number of cancer patients. 
Currently used cancer immunotherapies 
include oncolytic virus therapy, cancer 
vaccines, adoptive cell transfer, and immune 
checkpoint inhibitors [5]. 
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The concept of using viruses to treat 
tumors originated more than a century ago, 
but it is only in the past 20 years that the 
effects have gained strength. The species of 
OVs include DNA, single-stranded RNA 
(ssRNA), and double-stranded RNA (dsRNA) 
viruses, with varying immunobiological 
consequences following infection of tumors 
and/or other cells[6]. 

The effect of oncolytic virus therapy is to 
kill tumor cells directly. It may also facilitate 
in situ immunization against whole tumors 
without the need for personalization or pre-
selection of tumor-associated antigens, also by 
establishing immunogenic (thermal) 
microenvironments. T-VEC has been 
approved for the treatment of skin melanoma 
since 2015. However, the oncolytic virus has 
certain limitations in tumor treatment, and 
combined therapy with radiotherapy and 
chemotherapy can make the oncolytic virus 
play a greater role [6]. 

2. Cancer vaccine 

The use of tumor cells or tumor antigens to 
activate the immune system of patients, 
induce a cellular or humoral anti-tumor 
immune response, and prevent tumor growth, 
spread, and recurrence, to control or 
eliminate the tumor. According to the 
composition of cancer, vaccines can be 
divided into the virus, peptide vaccine, 
bacterial vector vaccine, nucleic acid vaccine, 
and dendritic cell vaccine. According to their 
functions, they can be divided into preventive 
cancer vaccines and therapeutic cancer 
vaccines. Preventive vaccines are available 
only for papillomavirus-caused cancers. Most 
vaccines are therapeutic, and designed to 
remove lesions [7]. 

3. Adoptive cell transfer 

A passive immunotherapy in which 
immune cells derived from the patient are 
modified, activated, and expanded in vitro and 
then re-injected back into the patient to 
achieve the purpose of tumor identification. 
These include tumor-infiltrating lymphocytes 
(TILs), chimeric antigen-modified T cells 
(CAR-T), and T cell antibody-modified T cells 
(TCR-T) [8].  

 

4. Immune Checkpoint inhibitors 

Immune checkpoint proteins are used by 
cancer cells to avoid and suppress antitumor 
responses. ICIs provide a durable response in 
only a small proportion of patients. Targeted 
immunosuppression of tumor 
microenvironment is helpful to overcome ICIs 
resistance. Immune checkpoint blockade is 
arguably the most important development of 
the last decade. Currently, the applied targets 
include PD1/PD-L1 and CTLA-4[9, 10]. 

CTLA-4, usually on the surface of CD4+ and 
CD8+T cells, can bind to ligands on antigen-
derived cells, produce signals that inhibit T 
cell activation, reduce cytokine production, 
and reduce the body's anti-tumor immune 
response. PD1 binds to PD-L1 or PDL2 ligands 
on the surface of T lymphocytes, inhibits 
intracellular signal transduction, and induces 
apoptosis of T cells, which is the immune 
escape of tumor cells. Immune checkpoint 
inhibitors are approved for use in a variety of 
cancers, including melanoma, renal cell 
carcinoma (RCC), advanced non-small cell 
lung cancer (NSCLC), classical Hodgkin 
lymphoma (HL), bladder cancer, Merkel cell 
carcinoma, and head and neck cancer. Several 
immune checkpoint inhibitors are currently in 
clinical use, including Ipilimumab, Nivolumab, 
and Atezolimab [9, 11]. 

5. Post-translational modification of 
protein 

Post-translational modification refers to a 
covalent process that a protein undergoes 
during or after translation, that is, the 
addition of modifying groups to one or more 
amino acid residues or the removal of groups 
by proteolysis, which changes the properties 
of a protein[12, 13]. 

Protein modification after translation is a 
complicated process, almost the whole 
process of cell life activities, such as gene 
transcription, signal transduction, energy 
metabolism, protein interaction, etc., affect 
protein subcellular localization, stability, 
activity, and cancer, neurological disease, 
cardiovascular disease, and much other 
development is closely related to the 
occurrence of diseases. At present, there are 
more than 400 types of known post-
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translational modifications of proteins, 
including methylation, alkylation, 
glycosylation, ubiquitination, 
phosphorylation, palmitoylation, and so on. 
Almost all proteins can undergo post-
translational modifications [12, 14, 15]. 

6. Acetylation 

Acetylation is a dynamic and reversible 
regulatory process involved in most biological 
processes and regulates tumor proliferation 
through various cellular pathways, such as 
control of the cell cycle, apoptosis, and 
different metabolic pathways. Branched-chain 
amino acid transaminase (BCAT2) is mainly 
acetylated at lysine 44, which inhibits BCAA 
metabolism and pancreatic tumorigenesis 
[16]. Malic enzyme 1 (ME1) is acetylated at 
K337 and dynamically regulates the 
occurrence of colorectal tumors [17]. In 
pancreatic cancer, K5 acetylation of lactate 
dehydrogenase A (LDH-A) is down-regulated 
[18]. 6SIRT2 can deacetylate IDH1 at K224 
and exert a tumor-suppressive effect in colon 
cancer cell models through IDH1 enzyme 
activity and the HIF1a-SRC transcription axis 
[19]. 

7. Phosphorylation/ Glycosylation 

Protein phosphorylation is the most 
common and important process in PTM, 
which is involved in almost all biological 
activities. Moreover, phosphorylation can also 
promote the occurrence and development of 
tumors by influencing the proliferation of 
cancer cells. AMPK mediates the 
phosphorylation of PDHA at S295 and S314, 
which drives the TCA cycle and promotes lung 
metastasis of breast cancer [20]. Pgk1-
mediated phosphorylation of PDHK1 is closely 
related to the staging and prognosis of breast 
cancer, esophageal cancer, gastric cancer, and 
other cancers [21]. Phosphorylation of cAMP 
response element-binding protein (CREB) -
specific coactivator CRTC2 at Ser238 
promotes proliferation, migration, and 
invasion of colorectal cancer cells [22]. 
Phosphorylation of 10PIM1 target sites 
stimulates NFATC1 activity and enhances its 
ability to promote migration and invasion of 
prostate cancer cells [23]. 

Glycosylation is a common post-
translational modification of proteins. By 

forming glycosylated bonds, glycosylation 
affects the spatial conformation and 
localization of proteins and is involved in the 
signal transduction process, which is closely 
related to the occurrence of many diseases. 
According to the different glycosylation 
bonds, glycosylation can be divided into O-
glycosylation and N-glycosylation. Mucin-type 
O-glycosylation is one of the most common 
post-translational modifications of many 
membrane-bound and secreted glycoproteins. 
It occurs in the Golgi apparatus and is 
regulated by glycosyltransferases. Aberrant 
glycosylation is increasingly recognized as a 
driver of tumorigenesis [24]. 

Abnormal O-glycosylation is a contributing 
factor to the development and progression of 
colorectal neoplasms [25]. In pancreatic 
cancer cells, 2-DG increases the 
phosphorylation of GFAT1 and induces ER 
apoptosis by disrupting the N-glycosylation of 
the protein [26]. The targeted intervention of 
glycosylation modification of B7H3 protein to 
promote its protein degradation can be used 
as an entry point to enhance immunotherapy 
for triple-negative breast cancer, and provide 
a promising treatment strategy for triple-
negative breast cancer. C-Jun modified by O-
glycosylation can resist ferry death by 
inhibiting the synthesis of glutathione. 
Therefore, blocking the modification of O-
glycosylation can inhibit the occurrence of 
liver cancer and contribute to the treatment of 
liver cancer [27]. 

 8. Ubiquitination and Lactate 

refers to the process in which one or more 
ubiquitin molecules, under the action of a 
series of special enzymes, classify intracellular 
proteins, select target protein molecules from 
them, and specifically modify the target 
proteins. An Ubiquitination is an important 
protein modification that plays an important 
role in protein regulation [28, 29]. 

The Ubiquitin proteasome degradation 
pathway is the most important protein 
degradation pathway in eukaryotic cells, 
which is involved in various physiological 
processes, including signal transmission, 
transcriptional regulation, cell cycle, 
apoptosis, DNA damage repair, and is closely 
related to tumors and cardiovascular diseases. 
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Ubiquitin binding enzyme E2T (UBE2T) 
overactivates the Wnt/β-catenin signaling 
pathway by inducing the polyubiquitin and 
degradation of activated protein kinase 
receptor (RACK1) at K172, K225 and K257, 
thereby promoting the progression of gastric 
cancer [28]. Deubiquitinase FSP20 can 
deubiquitinate SNAI2 and inhibit its 
degradation, which promotes the metastasis 
of breast cancer [30]. 

A novel post-translational modification of 
whole proteins was discovered by Yingming 
Zhao's team in Chicago in 2019. Lactate can 
act as a precursor to lactate histone lysine, 
which is involved in cancer and other 
diseases. Moreover, lactic acid accumulation 
helps cancer cells evade the immune system 
and inhibits immune killing [31]. Lactate 
regulates Treg cell production through Lys72 
lactation in MOESIN, and then improves the 
interaction mechanism of MOESIN with TGF-β 
and downstream SMAD3 signaling, which 
provides a new theoretical basis for tumor 
immunotherapy by targeting Treg cells [32]. 

9. Methylation, Crotonylation, 
Succinylation and Malonylation 

In addition to phosphorylation and 
acetylation, methylation is the most important 
post-translational modification of proteins. 
Proteins can be monomethylated, 
dimethylated, or trimethylated on lysine 
residues, and monomethylated, symmetric, or 
asymmetric dimethylated on arginine 
residues. Methylation is more involved in 
epigenetic processes, but also DNA damage 
repair, signal transduction, cell development, 
carcinogenesis, and other processes [33]. 

Crotonylation can occur at serine and 
lysine residues and usually plays an important 
role in regulating gene expression. 
Crotonylation is closely related to 
transcriptional regulation, DNA damage 
repair, reproductive regulation, and cancer 
metabolism. Crotonylation levels were 
decreased in liver, stomach, and kidney 
cancers and increased in thyroid, esophageal, 
pancreatic, and lung cancers. In particular, the 
increase of crotonylation can inhibit the 
viability and proliferation of hepatocellular 
carcinoma cells [34]. 

Compare with methylation Succinylation 
and acetylation, succinylation can cause more 
chances in protein properties, resulting in 
greater changes in protein structure and 
function. Succinate is involved in cell energy 
metabolism and ATP synthesis and is an 
important intermediate of the tricarboxylic 
acid cycle. Studies have shown that succinate 
dehydrogenase (SDH) mutations are present 
in most tumors, and the accumulation of 
succinate and succinylation of protein lysine 
caused by SDH mutations may be important 
factors in promoting tumor development [35]. 
In colon cancer cells, high succinylation of 
citrate synthase at k393 and k395 
significantly reduces its activity, which can 
inhibit the proliferation and migration of 
colon cancer cells [36]. 

Malonylation is an evolutionarily 
conserved post-translational modification of a 
protein that occurs on lysine. Malonyl coal is 
used as a substrate to modify lysine residues, 
thereby affecting the composition of the 
protein. Malonylation has a feedback effect on 
fatty acid biosynthesis [37]. Malonylation can 
also inhibit mitochondrial function. mTOR 
malonylation inhibition of FASN reduces the 
enzymatic activity of mTORC1, resulting in 
vascular defects [38]. Depletion of 
mitochondrial transcription factor TFAM can 
inhibit the tricarboxylic acid cycle of 
mitochondria, promote the accumulation of 
malonyl-CoA in the cytoplasm, and lead to 
malonylated modification and nuclear 
translocation of actin-binding protein mDia2. 
This can promote Faction formation of nuclear 
actin, and then induce the expression of 
metastasis-related genes, including 
extracellular matrix remodeling, angiogenesis, 
cell migration, and adhesion, and finally 
promote the metastasis of liver cancer [39]. 

10. SUMO (small ubiquitin-like modifier) 

An isopeptide bond is formed between the 
C-terminal carboxyl group of the small 
ubiquitin-like protein SUMO1 and the ε-amino 
group of the lysine residue of the target 
protein. The most common types of 
SUMOylation in mammalian cells are SUMO1, 
SUMO2, and SUMO3. Overexpression of 
SUMOylation-modified enzymes in cancer 
cells can change the transcriptional activity of 
genes, gene expression, and cell proliferation, 
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leading to the occurrence and development of 
cancer [39]. 

Adp-ribosylation: ADP-ribosylation is a 
macromolecular dynamic reversible chemical 
modification that regulates a variety of 
cellular processes, such as DNA damage, 
transcription, translation, and aging. ADP 
ribosylation is a process in which ADP-ribose 
groups generated by NAD+ cleavage are 
covalently linked to target proteases. The 
ADP-ribose polymerase is a potential target in 
cancer therapy, and can also be used as a 
sensitizer in combination with conventional 
chemotherapy in cancer therapy [40]. The key 
proteins involved in tumor immunotherapy 
can undergo post-translational modification 
and its effect on tumor progression: Protein is 
an important component of life, is the 
essential material of life, and is an essential 
part of life activities. Changes in protein often 
have an impact on the state of life. In tumors, 
pathogenesis modification has an unknown 
role in tumorigenesis and progression [41]. 

11. PD1, PD-L1, and p53 

The post-translational modification types 
of PD1 include ubiquitination, 
deubiquitination, and glycosylation. An 
abnormal E3 line will lead to the deregulation 
of the PD-1 signaling pathway, thereby 
affecting tumorigenesis. The glycosylation 
sites of PD1 include N49, N58, N74, and N116, 
and the abnormality of these sites can affect 
the stability and expression level of PD1. 
Glycosylation of PD1 can affect its ability to 
bind to PD-L1 ligands [42]. 

PD-L1 can undergo ubiquitination, 
deubiquitination, phosphorylation, 
acetylation, palmitoylation, and glycosylation. 
Gene or drug regulation of PD-L1 acetylation 
can block its nuclear translocation, thereby 
enhancing the antitumor effect of PD-1 
blockers. Disruption of palmitoylation of PD-
L1 enhances immune responses. The 
glycosylation sites of PD-L1 include N35, 
N192, N200, and N219, which are related to 
the stability of PD-L1. Blocking PD-L1 
glycosylation can significantly improve the 
antitumor effect. Some glycosyltransferases 
that catalyze the modification of PD-1/PD-L1 
glycosylation have also been found to be 
involved in tumor invasion and metastasis, 

and are closely related to the prognosis of 
tumor patients. The development of 
therapeutic methods targeting PD-1/PD-L1 
glycosylation has obvious advantages and is 
expected to become a new approach and 
method for cancer treatment [43]. 

P53 is one of the most commonly mutated 
genes in human cancers. Active p53 is affected 
by multiple covalent posttranslational 
modifications, including phosphorylation, 
methylation, ubiquitination, acetylation, and 
other types, which significantly affect the 
expression of p53 target genes. 
Phosphorylation is the most common 
posttranslational modification of P53. 
Phosphorylation and acetylation of p53 
usually lead to its stabilization and 
accumulation in the nucleus, followed by 
activation [44]. 

Expression of hepatitis C virus (HCV) core 
proteins induces hyperacetylation of p53 at 
Lys373 and Lys382 and increases (low 
expression levels) or inhibits (high expression 
levels) phosphorylation of p53 at Ser15, 
depending on the level of HCV expression. The 
target of p53 ubiquitination is Lys386, and 
ubiquitination has been reported to regulate 
the transcriptional activity of p53. P53 is 
degraded through an ubiquitin-dependent 
process mediated primarily by MDM2. 
Posttranslational modification of P53 has 
many effects on P53. Therefore, targeting the 
posttranslational modification site of p53 may 
be a novel strategy for tumor treatment [44]. 

12. Skp2 (S-phase kinase-associated 
protein 2) 

An oncoprotein that regulates tumor 
proliferation, invasion, and metastasis. Skp2 is 
an oncogene discovered in recent years. Skp2 
overexpression is often observed in a variety 
of human cancers, including lymphoma, 
prostate cancer, melanoma, nasopharyngeal 
cancer, pancreatic cancer, and breast cancer, 
promoting the progression and metastasis of 
human cancers [45]. 

Ku70: Ku70 is an SKP2-binding protein. 
Superacetylation of Ku70 can eliminate the 
inhibitory effect of Ku70 and Bax on tumor 
cell apoptosis. Acetylation of Ku70 may be a 
potential new therapeutic target [46]. PARP1: 
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Acetylated at Lys949. Acetylation of PARP1 
inhibits its degradation, thereby increasing 
the ability of cells to repair DSBS. PARP 
inhibition (PARPi) has been used clinically to 
treat ovarian, breast, prostate, and pancreatic 
cancers. Acetylation of PARP1 at different 
lysine sites has opposite functions in the 
efficiency of DNA double-strand damage 
repair, suggesting that precise regulation of 
PARP1 acetylation may be a potential novel 
therapeutic target [47]. 

13. Ras protein 

RAS protein participates in multiple 
cascade reactions, regulates multiple key 
cellular processes, and is a key component of 
cell survival, proliferation, transformation, 
and differentiation signaling pathways. RAS 
proteins have several types of 
posttranslational modifications, including 
sumoylation, phosphorylation, palmitoylation, 
ubiquitination, and acetylation. RAS proteins 
undergo palmitoylation at C181 and L184, 
providing an affinity trap for RAS proteins 
associated with membrane binding [48]. 
Phosphorylation of 27RAS at S181 results in 
its transfer from the plasma membrane to the 
inner membrane, affecting its toxicity, limiting 
cell growth, and even causing cell death [49]. 
RAS can undergo double ubiquitination and 
single ubiquitination modification, which can 
promote the endosomal association of RAS 
and control the rate of its signal output [50]. 

14. STAT (Signal Transmitter and activator 
of Transcription protein) 

STAT affects many physiological processes, 
including cell proliferation, apoptosis, 
division, and differentiation. The current 
STAT family has seven members: STAT1, 
STAT2, STAT3, STAT4, STAT5a, STAT5b, and 
STAT6. Among them, STAT3 has a great 
correlation with tumors, which can promote 
tumor proliferation and survival, and promote 
tumor growth. STAT3 underwent S-
palmitoylation at C687 and C712, which not 
only activated STAT3 but also enhanced its 
transcriptional activity (Figure 1) [51]. 
Zdhhc19-mediated palmitoylation of STAT3 
plays an important role in lung squamous cell 
carcinoma and high fat-related tumorigenesis 
in vivo [52]. 

15. Types and roles of signaling pathways 
in tumor immunotherapy 

 15.1 PIK3/AKT/mROT9 (PAM) 

The PAM pathway consists of three major 
players: PI3K, protein kinase B (AKT), and the 
mammalian target of rapamycin 
(mTOR)(Figure 2). PAM pathway has three 
main characteristics: multilevel regulation, 
cascade amplification; Phosphorylation-based 
signal transduction; relatively simple, straight 
line, single conduction mode. The 
phosphoinositol 3-kinase (PI3K)AKT-mTOR 
cascade is often overactivated in cancer and 
plays an integral role in many cellular 
processes, including tumor growth and 
survival, that can serve as a basis for 
therapeutic resistance [52]. PI3K, AKT, and 
mTOR regulate important cancer signal 
transduction crossroads, which makes the 
PAM pathway play an important role in tumor 
immune regulation. The PAM pathway can 
influence regulatory T cells and myeloid-
derived suppressor cells to maintain an 
immunosuppressed tumor microenvironment. 
The PI3K pathway is activated in most 
glioblastomas [53]. 

16. TGF-β 

Abnormal TGF-β signaling pathway can 
lead to physiological dysfunction of cells and 
affect the occurrence and development of 
tumors. There are two types of receptors on 
the cell membrane: typeⅠTGF-β receptor and 

type Ⅱ TGF-β receptor, both of which are 
transmembrane proteins with filamentous 
threonine kinase activity. TGF-β binds to type 
Ⅱ TGF-β receptor and then recruits’ type Ⅰ 
TGF-β receptor to form a ligand-receptor 
complex. Type Ⅱ receptor phosphorylates the 

intracellular region of type Ⅰ receptor, and 

activated type Ⅰ receptor phosphorylates 
intracellular SMAD2 and SMAD3, which form 
dimers and bind to SMAD4 and are 
transferred into the nucleus for 
transcriptional regulation[47]. 

TGF-β plays a dual role in malignant 
tumors. The tumor suppressor effect of TGF-β 
is that it induces the expression of tumor 
suppressor-related genes to maintain the 
homeostasis of normal tissues and prevent 
the early formation of tumors. When TGF-β 
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signaling loses its tumor suppressor effect, 
cancer cells can use this pathway to promote 
tumor development [47]. 

 

 

 

Fig. 1. Signal transducer and activator of transcription (STAT) [54]. This figure is licensed under a 

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) 

 

Fig. 2. PI3K/AKT/mTOR signalling pathway 

http://creativecommons.org/licenses/by/4.0/
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17. NK-кB and Jak-STAT 

NK-кB can be activated by a variety of 
factors, including cytokines, ionizing 
radiation, and chemotherapy drugs. NK-кB is 
functional in the immune inflammatory 
response of the body. The NK-кB pathway is 
highly active in cancers such as prostate, 
breast, pancreatic, gastric, and head and neck 
cancers. The high expression or mutation of 
the NK-кB signaling pathway may lead to the 
continuous activation of the NK-кB signaling 
pathway, which may lead to the occurrence 
and development of tumors [55]. 

JAK is a non-receptor tyrosine-protein 
kinase. As a direct substrate of JAK, STAT can 
transmit signals into the nucleus and regulate 
the expression of specific genes STAT. 
Compared with other signaling pathways, the 
transmission process of the JAK-STAT 
pathway is relatively simple. After activation 
of JAK, the tyrosine residues on the catalytic 
receptor are phosphorylated, and then JAK 
catalyzes the STAT protein bound to the 
receptor. The activated STAT protein enters 
the nucleus in the form of a dimer and 
activates and regulates gene transcription 
with target genes. This signaling pathway can 
be activated in tumors, and activated STAT 
seems to be more prognostic [56]. 

18. PD-1/PD-L1 

After PD-1 in immune cells binds to tumor 
cell biaomPD-L, specific aggregation protein 
tyrosine phosphatase (SHP1)h and protein 
tyrosine phosphatase 2 (SHP2) bind to ITIM. 
The downstream signaling pathway 
phosphatidylinositol 3-kinase-protein kinase 
B (PI3K-AKT) is dephosphorylated, which 
blocks activation, hinders the formation of 
activated T cells, and reduces the expression 
of cytokines such as interleukin-2, interferon-
γ, and tumor necrosis factor. The study of this 
signaling pathway has greatly promoted the 
development of immunotherapy and the 
targeting of immune checkpoints. However, 
the interaction between PD-L1 and PD-1 on 
the cell surface is only the tip of the iceberg, 
which needs to be further studied to open up 
a broader prospect for cancer diagnosis and 
treatment [57, 58]. 

 

19. Conclusion 

The tumor is a systemic chronic disease 
with multi-etiology, multi-process, and multi-
outcome, involving molecular changes at 
multiple levels including genome, 
transcriptome, proteome, and metabolome. 
Posttranslational modification is an extremely 
important aspect of the protein domain. There 
are many kinds of post-translational 
modifications, which can change protein 
structure and regulate protein function. Post-
translational modified proteins can 
participate in physiological processes such as 
cell proliferation, differentiation, and 
apoptosis, or even be a member of signaling 
pathways, changing the outcome of signal 
transduction[59]. 

Posttranslational modifications not only 
regulate tumor therapeutic targets such as 
PD1 and PD-L1 but also regulate key enzymes 
such as STAT and RAS. Although the 
mechanism of post-translational modification 
is not fully understood, it is undeniable that it 
is involved in tumorigenesis [59]. 
Development and prognosis are also closely 
related to the diagnosis, treatment, and 
prognosis assessment of tumors, and provide 
opportunities and conditions for personalized 
and accurate prediction, diagnosis, treatment, 
and prognosis of treatments. Therefore, target 
therapy for post-translational modifications of 
proteins may become a future research 
direction. 
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