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A B S T R A C T 

Up to one million secondary metabolites are found in plant species, 

some of which may have desirable therapeutic activities. Among 

these secondary metabolites, catechin, gallic acid, and 

epigallocatechin-3-gallate are natural phenolic compounds with 

promising antioxidant and antibacterial activity. However, these 

compounds have disadvantages of poor solubility, low 

bioavailability in physiological conditions, and side effects in 

patients. Therefore new strategies could rely on formulations with 

other synthetic and natural materials. Nanoformulations of 

secondary metabolites could be new efficient strategies to treat 

many chronic bacterial infections. Combinations and conjugates of 

catechin, gallic acid, and epigallocatechin-3-gallate with various 

antibiotics could reduce the dose of these compounds, increase their 

antibacterial activity, and decrease cytotoxicity against healthy cells. 

For instance, a smart combination of two or more secondary 

metabolites may improve therapeutic applications in physiological 

conditions. In this regard, the growth of antibiotic-resistant bacteria, 

specifically multidrug-resistant bacteria with overexpression of 

efflux pumps and expression of the penicillinase enzyme, has been 

inhibited significantly. According to recent investigations, this 

review will discuss the advances and challenges of new micro and 

nanoformulations of these natural products.  
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1. Introduction 

There are between 200000 up to 1 million 
primary and secondary metabolites found in 
plants, some of which may have useful 
therapeutic activity (Figure 1) [1-7]. 
Nanoformulations (or microformulations) of 
these metabolites could be new effective 
strategies for treating many diseases, 
especially chronic infections [8-12]. Among 
these secondary metabolites, catechin is a 
secondary metabolite found in various plant 
species, such as Senegalia catechu (cutch 

tree), with pronounced antioxidant and 
antimicrobial properties [13]. 
Epigallocatechin-3-gallate or epigallocatechin 
gallate (EGCG) is a polyphenol with the 
chemical structure of an ester between 
epigallocatechin and gallic acid [14].  EGCG 
can be extracted abundantly from the tea 
plant Camellia sinensi, (Figures 2a-c) [15]. 
Different types of tea, including black, white, 
and green tea have shown 936, 4245, and 
7380 mg per 100 g of dried leaves [16]. 
Moreover, pecans, hazelnuts, onions, plums, 
and apples all contain varying amounts of 
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EGCG. Synergistic antimicrobial effects can be 
found by combining EGCG and antibiotics. For 
instance, EGCG plus carbapenem showed 
significant inhibition of carbapenem-resistant 
Acinetobacter baumannii with the ability to 
produce β-lactamase, with minimum 
inhibition concentrations (MICs) of ≤ 1.0 
µg/mL [17]. EGCG can increase susceptibility 
to tetracycline antibiotics and 
chloramphenicol, particularly in the case of 
Pseudomonas. aeruginosa strains with efflux 
pump expression [18]. Therefore the 
objectives of this review are to compare the 
antibacterial activity of these three plant 
metabolites against sensitive and antibiotic-
resistant bacteria and to discuss the promise 
of new micro and nanoformulations in future 
investigations.  

2. Catechin 

Multidrug-resistant bacteria are becoming 
a major problem in treating bacterial 
infections [19-21]. Among these bacteria, 
methicillin-resistant Staphylococcus aureus 
(MRSA) can lead to severe infections, 
particularly in the case of patients with 
immunodeficiency disorders. Moreover, 
conventional antibiotics are mostly ineffective 
against this species [22]. Catechin isolated 
from Anacardium occidentale nutshells 
showed a minimum inhibitory concentration 
(MIC) of 78.1 μg/mL and an inhibition zone 
diameter (IZD) of 19.5 mm against MRSA. In 
contrast to methicillin, treatment with 
catechin at the MIC value increased reactive 
oxygen species (ROS) generation (H2O2) by 
1.87-fold compared to the control sample. 
Moreover, the level of superoxide dismutase 
enzyme in the S. aureus cell lysate was also 
reduced [23].  

Derivatives of catechin have attracted 
attention because of their unique therapeutic 
effects. For instance, ester compounds 
between the novel thiol-containing 
nucleophile tiopronin, (−)-epicatechin-4β-S-
tiopronin methyl ester (ECT) and (+)-
catechin-4β-S-tiopronin methyl ester (CT) 
showed higher antibacterial activity towards 
S. aureus and Escherichia coli in comparison 
with epicatechin and catechin alone [24]. 
These compounds could be loaded into 
organic or inorganic nanocarriers as a new 

approach to increase antibacterial activity. 
The antibacterial mechanism of catechin 
against Aggregatibacter 
actinomycetemcomitans, an oral bacterium, 
was suggested to involve blocking the activity 
of leukotoxin by inhibiting the binding of the 
toxin to the cholesterol of the cellular 
membrane [25]. 

2.1. Nanoformulations of catechin  

Nanoformulations with sizes in the 
nanoscale range of 1-100 nm have been used 
to improve the solubility and bioavailability of 
many bioactive materials, with the advantages 
of biocompatibility and biodegradability [26-

28]. For instance, using an ionic gelation 
reaction, quercetin and catechin were loaded 
onto chitosan nanoparticles, producing 
particles with a zeta potential of 31.79 mV, a 
mean diameter of 180.4 nm, and an ellipsoidal 
shape. This nano-formulation showed a 
loading efficiency of 52.23% and 76.35% for 
quercetin and catechin, respectively. The MIC 
values for this formulation against E. coli, S. 
aureus, and Bacillus subtilis were < 4.88 
µg/mL, 9.76-4.88 µg/mL, and 9.76-4.88 
µg/mL, respectively. In contrast, blank 
chitosan nanoparticles showed 625 - 312.50 
µg/mL, 1250-625 µg/mL, and no antibacterial 
activity against E.coli, S.aureus, and B. subtilis, 
respectively [29].  A green tea extract 
containing catechin was also loaded onto 
polylactic acid/gelatin microfibers to inhibit 
bacterial growth [30]. β-Cyclodextrin-metal-
organic frameworks were employed as 
nanocarriers to load catechin and were then 
incorporated into zein (corn protein) film. In 
addition to antioxidant activity, the 
nanocomposite film showed sustained release 
of catechin with an antibacterial effect against 
S. aureus and E. coli [31]. In another 
investigation, catechin-functionalized ZnO 
nanoclusters with a mean size of 24.1 nm 
showed MBC values of 59.5 μg/mL against E. 
coli, compared with catechin and penicillin 
with values of 1838 μg/mL and 25 μg/mL, 
respectively [32]. In another study, NPs 
prepared from catechin and rhenium (III) 
were coated onto a polyamide membrane to 
suppress planktonic and biofilm growth of P. 
aeruginosa with an inhibition rate up to >90% 
[33].  
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Fig. 1. The main secondary metabolites of phenols and polyphenols with therapeutic activities (copyright 
under the terms of the Creative Commons Attribution License (CC BY) ) [3]. 
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Continuation of Fig. 1. [3]. 
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Fig. 2. Chemical structures and space-filling models of (a) catechin; (b) gallic acid; (c) epigallocatechin 
gallate (EGCG) (https://pubchem.ncbi.nlm.nih.gov).  

3. Gallic acid 

The smart combination of two or more 
plant metabolites may improve therapeutic 
antibacterial effects in physiological 
conditions. For instance, the grafting of gallic 
acid onto the acidic polysaccharide pectin was 
accomplished by using an enzymatic method 
to attach the 4-OH group of gallic acid to the 
carboxyl groups (-OH) of pectin. The 
inhibition rates for S. aureus and E. coli were 
47.87% and 31.56%, respectively, compared 
to pectin alone, with 8.92% and 2.93%. The 
expression of the mdoH gene coding for OpgH 
protein involved in biofilm formation was 
down-regulated in a gallic acid dose-

dependent manner. Additionally, based on the 
DPPH assay, the antioxidant activity of this 
formulation was 76.98% relative to pectin, 
with a value of only 2.68% [34].  

Magnetic iron oxide NPs (IONP) were 
functionalized by gallic acid (Figure 3) with a 
size range of 5-11 nm, a stable aggregation 
state, and hydrophilic properties. They 
showed both antioxidant and antibacterial 
activity. Percentage inhibition values for 
IONP-gallic acid at a concentration of 100 
mg/mL against E. coli and S. aureus were 
225%, while B. subtilis was inhibited by 250% 
[35].  

 
Fig. 3. Probabale chemical structure of iron gallate in NPs [35]. 

3.1. Nanoformulations of gallic acid 

Nanocarriers such as metal or metal oxide 
nanoparticles, liposomes, lipid nanoparticles, 
polymeric nanoparticles, and quantum dots 
have all been investigated, depending on the 
objectives of the therapy [36]. Phytoliposomes 
were synthesized via a thin-layer dispersion 
method based on bonding between the polar 
head of phospholipids in the liposomes and 

the OH- groups of gallic acid. In a comparative 
study, these phytoliposomes (GA-LIP) were 
compared with phyoliposomes decorated by 
lactoferrin (a multifunctional iron 
glycoprotein) to produce LF-GA-LIP. 
Interestingly, the sizes of these formulations 
in the simulated oral, stomach, and intestine 
conditions were 218.3, 243.5, and 486.4 nm, 
respectively. There was an electrostatic 
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interaction between lactoferrin and the 
phospholipid bilayer, while hydrogen bonding 
connected the hydroxyl groups of gallic acid 
and the polar phospholipid head group in the 
liposomes. Both liposomes showed a spherical 
structure by transmission electron 
microscopy and atomic force microscopy.  LF-
GA-LIP displayed a delayed-release effect 
compared with GA-LIP in simulated digestion.  
LF-GA-LIP showed MIC values of 0.25 µg/mL 
against E. coli and S. aureus, while GA-LIP was 
less effective, and pure gallic acid had a MIC of 
1 µg/mL [37].  

In comparison to silver NPs, copper NPs 
show lower cytotoxicity along with the 
suitable antibacterial activity. Copper NPs 
were coated with chitosan and gallic acid by a 
microwave irradiation method. The chitosan-
copper-gallic acid nanocomposites (NCs) 
showed peroxidase-like and oxidase-like 
activity.  The NCs exhibited strong growth 
inhibition against E. coli and S. aurues with 
values of 91% and 99.9% at 20 μg/mL, by a 
mechanism involving leakage of the bacterial 
contents followed by the death of the bacteria. 
In contrast, chitosan-copper-tannic acid at a 
similar concentration demonstrated no 
bactericidal effects against E. coli and only 
0.9% inhibition against S. aureus [38].  

4. Epigallocatechin-3-gallate (EGCG) 

Oral rehydration treatment is the primary 
therapy for diarrheal diseases and cholera 
caused by Vibrio cholerae, although treatment 
with antibiotics is recommended for severely 
ill patients. However, infection with V. 
cholerae multidrug-resistant (MDR) strains 
can lead to worse outcomes for patients [39]. 
As shown in Figure 4, MDR V. cholerae 
underwent membrane disruption after 
treatment with purified EGCG (98%) 
extracted from Camellia sinensis L., at a 
concentration of 0.5 mg/mL and 37 °C for 2 h. 
Moreover, a synergistic effect was found for 
the combination of EGCG and tetracycline 
with MIC values of 0.061, 0.008, and 0.004 
µg/mL against MDR strains of V. cholerae  P48 
(O1), 22136 (O139), and N16961, respectively 
[40].  

EGCG was conjugated to 
chitooligosaccharides extracted from the 
squid pen (Loligo formosana) via a free radical 
grafting reaction, and the antibacterial activity 
was evaluated against E. coli and Listeria 
monocytogenes. The MBC values of this 
conjugate were measured as 1 mg/mL and 
0.05 mg/mL compared to unmodified 
chitooligosaccharides with MBCs of 2 mg/mL 
and 0.1 mg/mL against L. monocytogenes and 
E. coli, respectively [41].  

4.1. Nanoformulations of EGCG  

The major disadvantage of using EGCG in 
clinical applications is its poor solubility and 
low bioavailability. However, EGCG can be 
employed as an active natural filler to 
formulate polymeric films, hydrogels, and 
nanoparticles on the micro or nanoscale, to 
improve the antioxidant and antibacterial 
activity of a packaging film [42, 43]. In this 
regard, nanocomposites were prepared with 
dopamine hydrochloride and EGCG, which 
showed antioxidant activity with values of 
70.93% and 56.68% for the DPPH assay and 
ABTS scavenging assay, respectively. The MIC 
values of this formulation against E. coli and S. 
aureus were 1.6 and 0.4 mg/mL, respectively. 
The antibacterial mechanism for this nano-
formulation may be different for Gram-
negative and Gram-positive bacteria. In the 
case of Gram-positive bacteria, direct binding 
of the NCs to the naked peptidoglycan layer 
and for Gram-negative bacteria, oxidative 
stress by generating H2O2  could result in 
bacterial inhibition and death [44].  

Bare or functionalized metal or metal oxide 
nanoparticles, with higher activity in vitro and 
in vivo compared to bulk materials, can be 
utilized to formulate EGCG [22, 45-47]. The 
growth of E. coli, P. aeruginosa (Gram-
negative), Enterococcus faecalis and S. aureus 
(Gram-positive) were inhibited, with MICs in 
the range of 1-120 µg/mL after treatment 
with gold (Au) nanoparticles loaded with 
EGCG. These showed low cytotoxicity against 
human keratinocytes (HaCaT) and murine 
fibroblast cells (L929) [48].   
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Fig. 4. Disruption of the V. cholerae bacterial membrane after treatment with EGCG; a) and b) are control 
samples, c) and d) are bacteria treated with EGCG at 0.5 mg/mL and 37 °C for 2 h; scale bar is 1 µm with 
×10,000 and ×20,000 magnifications [40].  

5. Conclusions 

Various reports have demonstrated the 
bacteriostatic and bactericidal effects of EGCG 
against drug-resistant bacteria. However, 
EGCG has the disadvantages of low 
bioavailability and, when taken orally in 
patients, has adverse side effects of nausea, 
liver toxicity, and heartburn. Therefore, new 
formulations should be designed to overcome 
these limitations. One option may be the 
combination of EGCG with conventional 
antibiotics to reduce the EGCG dose and 
enhance the antibacterial activity of 
antibiotics. In this regard, antibiotic-resistant 
bacteria that show overexpression of efflux 
pumps and express penicillinase have both 
been significantly inhibited. Future studies 
should focus on optimizing these formulations 
with other antibacterial agents to hinder the 
development of antibiotic resistance, 
specifically in MDR bacteria. In the case of 
catechins, the primary antibacterial 
mechanism may be blocking the action of 
leukotoxin by inhibiting toxin binding to the 
cholesterol of the cellular membrane. Low 
bioavailability is the main disadvantage for 
the medical application of EGCG, catechin, and 
gallic acid. However, this limitation may be 
overcome by new formulations on the micro 
and nanoscale or as active natural fillers in 
polymeric nanoparticles, packaging films, and 
hydrogels. 
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