Document Type : Review Article

Authors

1 Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran

2 Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy

3 Department of Biotechnology, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

Abstract

MicroRNAs (miRNAs) are, small (roughly 19–25 nucleotides in length), conserved, non-coding, single-stranded, and functional RNA molecules with the properties of gene expression regulation through mRNA degradation, translation repression, mRNA deadenylation as well as gene silencing via histone methylation. They even have the ability to increase gene expression levels. The biogenesis of miRNAs is divided into two canonical and non-canonical pathways. The second pathway has a divergent mechanism for the biogenesis of miRNAs. miRNAs can be transcribed from specific genes or introns of protein-coding genes. A single miRNA species can control the expression of hundreds of genes, and also one gene can be the target of different miRNAs. These molecules have been identified in eukaryotic organisms such as mammals and plants and even in viruses. miRNAs play an inevitable role in the life cycle of eukaryotic cells. They are involved in any biological processes such as the regulation of cell proliferation and differentiation, apoptosis, signaling, and defense responses through their spatio-temporal expression manner. Aberrant expression of miRNAs is involved in a large number of biological disorders, which illustrates their great potential to be applied in the diagnosis and treatment of various diseases. miRNA inhibitors (anti-miRs) and artificial miRNAs (miRNA mimics) are two general approaches to balance the dysregulated miRNA levels that make it possible to treat various biological disorders. In this study, in general, the biogenesis and the role of miRNAs, the origin of miRNAs, viral miRNAs, miRNA detection procedures, in silico miRNA analysis tools, miRNA-based therapies and their obstacles, and miRNAs as potential non-invasive biomarkers are discussed. Finally, it is stated the importance of dietary miRNAs. 

Graphical Abstract

MicroRNAs; their therapeutic and biomarker properties

Keywords

Main Subjects

Selected author of this article by journal

Prof. Dr. Marcello Iriti
Università degli Studi di Milano
Google Scholar

Open Access

This article is licensed under a CC BY License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

CMBR journal remains neutral with regard to jurisdictional claims in published maps and institutional afflictions.

 

Letters to Editor

Given that CMBR Journal's policy in accepting articles will be strict and will do its best to ensure that in addition to having the highest quality published articles, the published articles should have the least similarity (maximum 15%). Also, all the figures and tables in the article must be original and the copyright permission of images must be prepared by authors. However, some articles may have flaws and have passed the journal filter, which dear authors may find fault with. Therefore, the editor of the journal asks the authors, if they see an error in the published articles of the journal, to email the article information along with the documents to the journal office.

CMBR Journal welcomes letters to the editor ([email protected], [email protected]) for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Critical letters can be sent to the journal editor as soon as the article is online. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] There is no limit to the number of words in a letter.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include Name, Email Address, Affiliation, mobile phone number, and Comments.

[7] Letters will be answered as soon as possible.

  1. Bavelloni A, Ramazzotti G, Poli A, Piazzi M, Focaccia E, Blalock W, Faenza I (2017) MiRNA-210: a current overview. Anticancer research 37 (12): 6511-6521
  2. Wang J, Liu S, Shi J, Li J, Wang S, Liu H, Zhao S, Duan K, Pan X, Yi Z (2019) The role of miRNA in the diagnosis, prognosis, and treatment of osteosarcoma. Cancer biotherapy & radiopharmaceuticals 34 (10): 605-613. doi:https://doi.org/10.1089/cbr.2019.2939
  3. Shaw P, Raymond G, Senthilnathan R, Kumarasamy C, Baxi S, Suresh D, Shetty S, Ram M R, Chandramoorthy HC, Sivanandy P (2021) Clinical theragnostic relationship between chemotherapeutic resistance, and sensitivity and mirna expressions in head and neck cancers: A systematic review and meta-analysis protocol. Genes 12 (12): 2029. doi:https://doi.org/10.3390/genes12122029
  4. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. cell 75 (5): 843-854. doi:https://doi.org/10.1016/0092-8674(93)90529-Y
  5. Aghajani M, Mansoori B, Mohammadi A, Asadzadeh Z, Baradaran B (2019) New emerging roles of CD133 in cancer stem cell: Signaling pathway and miRNA regulation. Journal of cellular physiology 234 (12): 21642-21661. doi:https://doi.org/10.1002/jcp.28824
  6. Sur S, Steele R, Shi X, Ray RB (2019) miRNA-29b inhibits prostate tumor growth and induces apoptosis by increasing bim expression. Cells 8 (11): 1455. doi:https://doi.org/10.3390/cells8111455
  7. Geng Y, Sui C, Xun Y, Lai Q, Jin L (2019) MiRNA-99a can regulate proliferation and apoptosis of human granulosa cells via targeting IGF-1R in polycystic ovary syndrome. Journal of Assisted Reproduction and Genetics 36 (2): 211-221. doi:https://doi.org/10.1007/s10815-018-1335-x
  8. Wang J, Zhao J (2021) MicroRNA dysregulation in epilepsy: from pathogenetic involvement to diagnostic biomarker and therapeutic agent development. Frontiers in molecular neuroscience 14): 650372. doi:https://doi.org/10.3389/fnmol.2021.650372/full
  9. Chen J-F, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang D-Z (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature genetics 38 (2): 228-233. doi:https://doi.org/10.1038/ng1725
  10. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic acids research 47 (D1): D155-D162. doi:https://doi.org/10.1093/nar/gky1141
  11. Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nature Reviews Genetics 12 (2): 136-149. doi:https://doi.org/10.1038/nrg2904
  12. Sokol NS (2012) Small temporal RNAs in animal development. Current Opinion in Genetics & Development 22 (4): 368-373. doi:https://doi.org/10.1016/j.gde.2012.04.001
  13. Giridharan V, Thandavarayan R, Fries G, Walss-Bass C, Barichello T, Justice N, Reddy M, Quevedo J (2016) Newer insights into the role of miRNA a tiny genetic tool in psychiatric disorders: focus on post-traumatic stress disorder. Translational psychiatry 6 (11): e954-e954. doi:https://doi.org/10.1038/tp.2016.220
  14. Fazeli-Nasab B, Sayyed RZ, Sobhanizadeh A (2021) In Silico Molecular Docking Analysis of α-Pinene: An Antioxidant and Anticancer Drug Obtained from Myrtus communis. Int J Cancer Manag 14 (2): e89116. doi:https://doi.org/10.5812/ijcm.89116
  15. O'Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in endocrinology 9): 402. doi:https://doi.org/10.3389/fendo.2018.00402/full
  16. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. The EMBO journal 23 (20): 4051-4060. doi:https://doi.org/10.1038/sj.emboj.7600385
  17. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425 (6956): 415-419. doi:https://doi.org/10.1038/nature01957
  18. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & development 17 (24): 3011-3016. doi:https://doi.org/10.1101/gad.1158803
  19. Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the Assembly of the RNAi Enzyme Complex. Cell 115 (2): 199-208. doi:https://doi.org/10.1016/S0092-8674(03)00759-1
  20. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs Exhibit Strand Bias. Cell 115 (2): 209-216. doi:https://doi.org/10.1016/S0092-8674(03)00801-8
  21. Curtis HJ, Sibley CR, Wood MJ (2012) Mirtrons, an emerging class of atypical miRNA. Wiley Interdisciplinary Reviews: RNA 3 (5): 617-632. doi:https://doi.org/10.1002/wrna.1122
  22. Stagsted LV, Daugaard I, Hansen TB (2017) The agotrons: Gene regulators or Argonaute protectors? BioEssays 39 (4): 1600239. doi:https://doi.org/10.1002/bies.201600239
  23. Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS (2009) Small RNAs derived from snoRNAs. Rna 15 (7): 1233-1240. doi:https://doi.org/10.1261/rna.1528909
  24. Zhu L, Ge J, Li T, Shen Y, Guo J (2019) tRNA-derived fragments and tRNA halves: The new players in cancers. Cancer Letters 452): 31-37. doi:https://doi.org/10.1016/j.canlet.2019.03.012
  25. Miyoshi K, Miyoshi T, Siomi H (2010) Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Molecular Genetics and Genomics 284 (2): 95-103. doi:https://doi.org/10.1007/s00438-010-0556-1
  26. Salim U, Kumar A, Kulshreshtha R, Vivekanandan P (2022) Biogenesis, characterization, and functions of mirtrons. Wiley Interdisciplinary Reviews: RNA 13 (1): e1680. doi:https://doi.org/10.1002/wrna.1680
  27. Berezikov E, Chung W-J, Willis J, Cuppen E, Lai EC (2007) Mammalian Mirtron Genes. Molecular Cell 28 (2): 328-336. doi:https://doi.org/10.1016/j.molcel.2007.09.028
  28. Zia MF, Flynt AS (2018) Detection and verification of mammalian mirtrons by northern blotting. In: miRNA Biogenesis. Springer, pp 209-219. doi:https://doi.org/10.1007/978-1-4939-8624-8_16
  29. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448 (7149): 83-86. doi:https://doi.org/10.1038/nature05983
  30. Kincaid RP, Chen Y, Cox JE, Rethwilm A, Sullivan CS (2014) Noncanonical microRNA (miRNA) biogenesis gives rise to retroviral mimics of lymphoproliferative and immunosuppressive host miRNAs. MBio 5 (2): e00074-00014. doi:https://doi.org/10.1128/mBio.00074-14
  31. Huang X, Zhu X, Yu Y, Zhu W, Jin L, Zhang X, Li S, Zou P, Xie C, Cui R (2021) Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Letters 501): 66-82. doi:https://doi.org/10.1016/j.canlet.2020.12.025
  32. Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome research 19 (1): 92-105. doi:https://doi.org/10.1101/gr.082701.108
  33. Wu W, Sun M, Zou GM, Chen J (2007) MicroRNA and cancer: Current status and prospective. International Journal of Cancer 120 (5): 953-960. doi:https://doi.org/10.1002/ijc.22454
  34. Millar AA, Waterhouse PM (2005) Plant and animal microRNAs: similarities and differences. Functional & integrative genomics 5 (3): 129-135. doi:https://doi.org/10.1007/s10142-005-0145-2
  35. Stavast CJ, Erkeland SJ (2019) The non-canonical aspects of microRNAs: many roads to gene regulation. Cells 8 (11): 1465. doi:https://doi.org/10.3390/cells8111465
  36. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C (2004) Identification of virus-encoded microRNAs. Science 304 (5671): 734-736. doi:https://doi.org/10.1126/science.1096781
  37. Zhan S, Wang Y, Chen X (2020) RNA virus-encoded microRNAs: biogenesis, functions and perspectives on application. ExRNA 2 (1): 1-7. doi:https://doi.org/10.1186/s41544-020-00056-z
  38. Yang X, Li H, Sun H, Fan H, Hu Y, Liu M, Li X, Tang H (2017) Hepatitis B virus-encoded microRNA controls viral replication. Journal of virology 91 (10): e01919-01916. doi:https://doi.org/10.1128/jvi.01919-16
  39. Omoto S, Ito M, Tsutsumi Y, Ichikawa Y, Okuyama H, Brisibe EA, Saksena NK, Fujii YR (2004) HIV-1 nef suppression by virally encoded microRNA. Retrovirology 1 (1): 1-12. doi:https://doi.org/10.1186/1742-4690-1-44
  40. Fazeli-Nasab B (2021) Biological Evaluation of Coronaviruses and the Study of Molecular Docking, Linalool, and Thymol as orf1ab Protein Inhibitors and the Role of SARS-CoV-2 Virus in Bioterrorism. journal of ilam university of medical sciences 28 (6): 77-96. doi:https://doi.org/10.29252/sjimu.28.6.77
  41. Qureshi A, Thakur N, Monga I, Thakur A, Kumar M (2014) VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets. Database 2014): bau103. doi:https://doi.org/10.1093/database/bau103
  42. Annese T, Tamma R, De Giorgis M, Ribatti D (2020) microRNAs biogenesis, functions and role in tumor angiogenesis. Frontiers in Oncology 10): 581007. doi:https://doi.org/10.3389/fonc.2020.581007/full
  43. Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR (2022) MicroRNA let-7 and viral infections: focus on mechanisms of action. Cellular & Molecular Biology Letters 27 (1): 1-47. doi:https://doi.org/10.1186/s11658-022-00317-9
  44. Leon-Icaza SA, Zeng M, Rosas-Taraco AG (2019) microRNAs in viral acute respiratory infections: immune regulation, biomarkers, therapy, and vaccines. ExRNA 1 (1): 1-7. doi:https://doi.org/10.1186/s41544-018-0004-7
  45. Hum C, Loiselle J, Ahmed N, Shaw TA, Toudic C, Pezacki JP (2021) MicroRNA mimics or inhibitors as antiviral therapeutic approaches against COVID-19. Drugs 81 (5): 517-531. doi:https://doi.org/10.1007/s40265-021-01474-5
  46. Kim SW, Li Z, Moore PS, Monaghan AP, Chang Y, Nichols M, John B (2010) A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic acids research 38 (7): e98-e98. doi:https://doi.org/10.1093/nar/gkp1235
  47. Love C, Dave S (2013) MicroRNA Expression Profiling Using Microarrays. In: Czader M (ed) Hematological Malignancies. Humana Press, Totowa, NJ, pp 285-296. doi:10.1007/978-1-62703-357-2_21
  48. King N, O'Connell DJ (2010) RT-PCR Protocols. Springer,
  49. Ye J, Xu M, Tian X, Cai S, Zeng S (2019) Research advances in the detection of miRNA. Journal of Pharmaceutical Analysis 9 (4): 217-226. doi:https://doi.org/10.1016/j.jpha.2019.05.004
  50. Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G (2019) Trends in the development of miRNA bioinformatics tools. Briefings in bioinformatics 20 (5): 1836-1852. doi:https://doi.org/10.1093/bib/bby054
  51. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003) The microRNAs of Caenorhabditis elegans. Genes & development 17 (8): 991-1008. doi:https://doi.org/10.1101/gad.1074403
  52. Gruber AR, Findeiß S, Washietl S, Hofacker IL, Stadler PF (2010) RNAz 2.0: improved noncoding RNA detection. In: Biocomputing 2010. World Scientific, pp 69-79. doi:https://doi.org/10.1142/9789814295291_0009
  53. Xue C, Li F, He T, Liu G-P, Li Y, Zhang X (2005) Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC bioinformatics 6 (1): 1-7. doi:https://doi.org/10.1186/1471-2105-6-310
  54. Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z (2007) MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic acids research 35 (suppl_2): W339-W344. doi:https://doi.org/10.1093/nar/gkm368
  55. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic acids research 40 (1): 37-52. doi:https://doi.org/10.1093/nar/gkr688
  56. Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB (2014) Common features of microRNA target prediction tools. Frontiers in genetics 5): 23. doi:https://doi.org/10.3389/fgene.2014.00023/full
  57. Wiemer EAC (2007) The role of microRNAs in cancer: No small matter. European Journal of Cancer 43 (10): 1529-1544. doi:https://doi.org/10.1016/j.ejca.2007.04.002
  58. Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome biology 11 (8): 1-14. doi:https://doi.org/10.1186/gb-2010-11-8-r90
  59. Krüger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic acids research 34 (suppl_2): W451-W454. doi:https://doi.org/10.1093/nar/gkl243
  60. Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. elife 4): e05005. doi:https://doi.org/10.7554/eLife.05005
  61. Lall S, Grün D, Krek A, Chen K, Wang Y-L, Dewey CN, Sood P, Colombo T, Bray N, MacMenamin P, Kao H-L, Gunsalus KC, Pachter L, Piano F, Rajewsky N (2006) A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans. Current Biology 16 (5): 460-471. doi:https://doi.org/10.1016/j.cub.2006.01.050
  62. Fahlgren N, Carrington JC (2010) miRNA Target Prediction in Plants. In: Meyers BC, Green PJ (eds) Plant MicroRNAs: Methods and Protocols. Humana Press, Totowa, NJ, pp 51-57. doi:10.1007/978-1-60327-005-2_4
  63. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, Vlachos IS, Tastsoglou S, Kanellos I, Papadimitriou D, Kavakiotis I, Maniou S, Skoufos G (2018) DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic acids research 46 (D1): D239-D245. doi:https://doi.org/10.1093/nar/gkx1141
  64. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic acids research 42 (D1): D68-D73. doi:https://doi.org/10.1093/nar/gkt1181
  65. Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms for molecular biology 6 (1): 1-14. doi:https://doi.org/10.1186/1748-7188-6-26
  66. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG (2015) DIANA-miRPath v3. 0: deciphering microRNA function with experimental support. Nucleic acids research 43 (W1): W460-W466. doi:https://doi.org/10.1093/nar/gkv403
  67. Esau CC, Monia BP (2007) Therapeutic potential for microRNAs. Advanced Drug Delivery Reviews 59 (2): 101-114. doi:https://doi.org/10.1016/j.addr.2007.03.007
  68. Gambari R, Brognara E, Spandidos DA, Fabbri E (2016) Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology. International journal of oncology 49 (1): 5-32. doi:https://doi.org/10.3892/ijo.2016.3503
  69. Svoronos AA, Engelman DM, Slack FJ (2016) OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer research 76 (13): 3666-3670. doi:https://doi.org/10.1158/0008-5472.CAN-16-0359
  70. Grimaldi AM, Salvatore M, Incoronato M (2021) miRNA-based therapeutics in breast cancer: a systematic review. Frontiers in oncology): 1472. doi:https://doi.org/10.3389/fonc.2021.668464/full
  71. Jager MJ, Shields CL, Cebulla CM, Abdel-Rahman MH, Grossniklaus HE, Stern M-H, Carvajal RD, Belfort RN, Jia R, Shields JA (2020) Uveal melanoma. Nature Reviews Disease Primers 6 (1): 1-25. doi:https://doi.org/10.1038/s41572-020-0158-0
  72. Krantz BA, Dave N, Komatsubara KM, Marr BP, Carvajal RD (2017) Uveal melanoma: epidemiology, etiology, and treatment of primary disease. Clinical ophthalmology (Auckland, NZ) 11): 279. doi:https://doi.org/10.2147%2FOPTH.S89591
  73. Rantala ES, Hernberg M, Kivelä TT (2019) Overall survival after treatment for metastatic uveal melanoma: a systematic review and meta-analysis. Melanoma research 29 (6): 561. doi:https://doi.org/10.1097%2FCMR.0000000000000575
  74. Yang C, Wang Y, Hardy P (2021) Emerging roles of microRNAs and their implications in uveal melanoma. Cellular and Molecular Life Sciences 78 (2): 545-559. doi:https://doi.org/10.1007/s00018-020-03612-w
  75. Peng D, Dong J, Zhao Y, Peng X, Tang J, Chen X, Wang L, Hu D-N, Reinach PS, Qu J (2019) miR-142-3p suppresses uveal melanoma by targeting CDC25C, TGFβR1, GNAQ, WASL, and RAC1. Cancer Management and Research 11): 4729. doi:https://doi.org/10.2147%2FCMAR.S206461
  76. Sun L, Wang Q, Gao X, Shi D, Mi S, Han Q (2015) MicroRNA-454 functions as an oncogene by regulating PTEN in uveal melanoma. FEBS Letters 589 (19, Part B): 2791-2796. doi:https://doi.org/10.1016/j.febslet.2015.08.007
  77. Milán Rois P, Latorre A, Rodriguez Diaz C, Del Moral Á, Somoza Á (2018) Reprogramming cells for synergistic combination therapy with nanotherapeutics against uveal melanoma. Biomimetics 3 (4): 28. doi:https://doi.org/10.3390/biomimetics3040028
  78. Zhong S, Golpon H, Zardo P, Borlak J (2021) miRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Translational Research 230): 164-196. doi:https://doi.org/10.1016/j.trsl.2020.11.012
  79. Nie H, Xie X, Zhang D, Zhou Y, Li B, Li F, Li F, Cheng Y, Mei H, Meng H (2020) Use of lung-specific exosomes for miRNA-126 delivery in non-small cell lung cancer. Nanoscale 12 (2): 877-887
  80. Demiray A, Sarı T, Çalışkan A, Nar R, Aksoy L, Akbubak İH (2021) Serum microRNA signature is capable of predictive and prognostic factor for SARS-COV-2 virulence Serum miRNA, SARS-COV-2 virülansı için prediktif ve prognostik faktör yeteneğine sahiptir. Turk J Biochem 2021): 1-9. doi:https://doi.org/10.1515/tjb-2020-0520
  81. Innocenti T, Bigagli E, Lynch EN, Galli A, Dragoni G (2022) MiRNA-Based Therapies for the Treatment of Inflammatory Bowel Disease: What Are We Still Missing? Inflammatory Bowel Diseases 2022): izac122. doi:https://doi.org/10.1093/ibd/izac122
  82. Pottoo FH, Javed MN, Rahman JU, Abu-Izneid T, Khan FA (2021) Targeted delivery of miRNA based therapeuticals in the clinical management of Glioblastoma Multiforme. Seminars in Cancer Biology 69): 391-398. doi:https://doi.org/10.1016/j.semcancer.2020.04.001
  83. Walgrave H, Zhou L, De Strooper B, Salta E (2021) The promise of microRNA-based therapies in Alzheimer’s disease: Challenges and perspectives. Molecular Neurodegeneration 16 (1): 1-16. doi:https://doi.org/10.1186/s13024-021-00496-7
  84. Gandhi G, Abdullah S, Foead AI, Yeo WWY (2021) The potential role of miRNA therapies in spinal muscle atrophy. Journal of the Neurological Sciences 427): 117485. doi:https://doi.org/10.1016/j.jns.2021.117485
  85. Rizkita LD, Astuti I (2021) The potential of miRNA-based therapeutics in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A review. Journal of Pharmaceutical Analysis 11 (3): 265-271. doi:https://doi.org/10.1016/j.jpha.2021.03.003
  86. Devaux Y, Badimon L (2021) CDR132L: another brick in the wall towards the use of miRNAs to treat cardiovascular disease. European Heart Journal 42 (2): 202-204. doi:https://doi.org/10.1093/eurheartj/ehaa870
  87. Zhang S, Cheng Z, Wang Y, Han T (2021) The risks of miRNA therapeutics: in a drug target perspective. Drug design, development and therapy 15): 721. doi:https://doi.org/10.2147%2FDDDT.S288859
  88. Diener C, Keller A, Meese E (2022) Emerging concepts of miRNA therapeutics: from cells to clinic. Trends in Genetics 38 (6): 613-626. doi:https://doi.org/10.1016/j.tig.2022.02.006
  89. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell research 18 (10): 997-1006. doi:https://doi.org/10.1038/cr.2008.282
  90. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences 105 (30): 10513-10518. doi:https://doi.org/10.1073/pnas.0804549105
  91. Hu S, Huang M, Li Z, Jia F, Ghosh Z, Lijkwan MA, Fasanaro P, Sun N, Wang X, Martelli F (2010) MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 122 (11_suppl_1): S124-S131. doi:https://doi.org/10.1161/CIRCULATIONAHA.109.928424
  92. Iwasaki H, Shimura T, Kitagawa M, Yamada T, Nishigaki R, Fukusada S, Okuda Y, Katano T, Horike S-i, Kataoka H (2022) A Novel Urinary miRNA Biomarker for Early Detection of Colorectal Cancer. Cancers 14 (2): 461. doi:https://doi.org/10.3390/cancers14020461
  93. Lee S-Y, Lu R-B, Wang L-J, Chang C-H, Lu T, Wang T-Y, Tsai K-W (2020) Serum miRNA as a possible biomarker in the diagnosis of bipolar II disorder. Scientific reports 10 (1): 1-10. doi:https://doi.org/10.1038/s41598-020-58195-0
  94. Zhang Y, Han T, Feng D, Li J, Wu M, Peng X, Wang B, Zhan X, Fu P (2020) Screening of non-invasive miRNA biomarker candidates for metastasis of gastric cancer by small RNA sequencing of plasma exosomes. Carcinogenesis 41 (5): 582-590. doi:https://doi.org/10.1093/carcin/bgz186
  95. Urabe F, Matsuzaki J, Yamamoto Y, Kimura T, Hara T, Ichikawa M, Takizawa S, Aoki Y, Niida S, Sakamoto H (2019) Large-scale Circulating microRNA Profiling for the Liquid Biopsy of Prostate CancerSerum miRNA Biomarker for Prostate Cancer. Clinical Cancer Research 25 (10): 3016-3025. doi:https://doi.org/10.1158/1078-0432.CCR-18-2849
  96. Tang Y, Zhao Y, Song X, Song X, Niu L, Xie L (2019) Tumor‐derived exosomal miRNA‐320d as a biomarker for metastatic colorectal cancer. Journal of Clinical Laboratory Analysis 33 (9): e23004. doi:https://doi.org/10.1002/jcla.23004
  97. Zhang J, Xing Q, Zhou X, Li J, Li Y, Zhang L, Zhou Q, Tang B (2017) Circulating miRNA21 is a promising biomarker for heart failure. Molecular medicine reports 16 (5): 7766-7774. doi:https://doi.org/10.3892/mmr.2017.7575
  98. Abu-Duhier F, Javid J, Sughayer M, Mir R, Albalawi T, Alauddin MS (2018) Clinical significance of circulatory miRNA-21 as an efficient non-invasive biomarker for the screening of lung cancer patients. Asian Pacific journal of cancer prevention: APJCP 19 (9): 2607. doi:https://doi.org/10.22034%2FAPJCP.2018.19.9.2607
  99. Su Y-J, Lin I-C, Wang L, Lu C-H, Huang Y-L, Kuo H-C (2018) Next generation sequencing identifies miRNA-based biomarker panel for lupus nephritis. Oncotarget 9 (46): 27911. doi:https://doi.org/10.18632%2Foncotarget.25575
  100. Peng X, Wang J, Zhang C, Liu K, Zhao L, Chen X, Huang G, Lai Y (2020) A three-miRNA panel in serum as a noninvasive biomarker for colorectal cancer detection. The International Journal of Biological Markers 35 (3): 74-82. doi:https://doi.org/10.1177/1724600820950740
  101. Li J, Lei L, Ye F, Zhou Y, Chang H, Zhao G (2019) Nutritive implications of dietary microRNAs: facts, controversies, and perspectives. Food & Function 10 (6): 3044-3056. doi:https://doi.org/10.1039/C9FO00216B
  102. Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell research 22 (1): 107-126. doi:https://doi.org/10.1038/cr.2011.158
  103. Rani P, Vashisht M, Golla N, Shandilya S, Onteru SK, Singh D (2017) Milk miRNAs encapsulated in exosomes are stable to human digestion and permeable to intestinal barrier in vitro. Journal of Functional Foods 34): 431-439. doi:https://doi.org/10.1016/j.jff.2017.05.009
  104. Etheridge A, Lee I, Hood L, Galas D, Wang K (2011) Extracellular microRNA: A new source of biomarkers. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 717 (1): 85-90. doi:https://doi.org/10.1016/j.mrfmmm.2011.03.004
  105. Liang H, Zhang S, Fu Z, Wang Y, Wang N, Liu Y, Zhao C, Wu J, Hu Y, Zhang J, Chen X, Zen K, Zhang C-Y (2015) Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma. The Journal of Nutritional Biochemistry 26 (5): 505-512. doi:https://doi.org/10.1016/j.jnutbio.2014.12.002
  106. Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, Kong H, Zhang Q, Qi X, Hou D (2015) Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell research 25 (1): 39-49. doi:https://doi.org/10.1038/cr.2014.130
  107. Cavalieri D, Rizzetto L, Tocci N, Rivero D, Asquini E, Si-Ammour A, Bonechi E, Ballerini C, Viola R (2016) Plant microRNAs as novel immunomodulatory agents. Scientific reports 6 (1): 1-13. doi:https://doi.org/10.1038/srep25761
  108. Chin AR, Fong MY, Somlo G, Wu J, Swiderski P, Wu X, Wang SE (2016) Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell research 26 (2): 217-228. doi:https://doi.org/10.1038/cr.2016.13
  109. Hou D, He F, Ma L, Cao M, Zhou Z, Wei Z, Xue Y, Sang X, Chong H, Tian C, Zheng S, Li J, Zen K, Chen X, Hong Z, Zhang C-Y, Jiang X (2018) The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. The Journal of Nutritional Biochemistry 57): 197-205. doi:https://doi.org/10.1016/j.jnutbio.2018.03.026
  110. Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, Tian C, Gao S, Dong H, Guan D (2010) Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell research 20 (10): 1128-1137. doi:https://doi.org/10.1038/cr.2010.80
  111. Park S, Lim W, Bazer FW, Whang K-Y, Song G (2019) Quercetin inhibits proliferation of endometriosis regulating cyclin D1 and its target microRNAs in vitro and in vivo. The Journal of Nutritional Biochemistry 63): 87-100. doi:https://doi.org/10.1016/j.jnutbio.2018.09.024
  112. Zhou H, Chen JX, Yang CS, Yang MQ, Deng Y, Wang H (2014) Gene regulation mediated by microRNAs in response to green tea polyphenol EGCG in mouse lung cancer. BMC genomics 15 (11): 1-10. doi:https://doi.org/10.1186/1471-2164-15-S11-S3
  113. Abdelfattah AM, Park C, Choi MY (2014) Update on non-canonical microRNAs. Biomolecular concepts 5 (4): 275-287. doi:https://doi.org/10.1515/bmc-2014-0012
  114. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nature reviews Drug discovery 16 (3): 203-222. doi:https://doi.org/10.1038/nrd.2016.246
  115. Catto JWF, Alcaraz A, Bjartell AS, De Vere White R, Evans CP, Fussel S, Hamdy FC, Kallioniemi O, Mengual L, Schlomm T, Visakorpi T (2011) MicroRNA in Prostate, Bladder, and Kidney Cancer: A Systematic Review. European Urology 59 (5): 671-681. doi:https://doi.org/10.1016/j.eururo.2011.01.044
  116. Chakraborty C, Doss CGP, Bandyopadhyay S, Agoramoorthy G (2014) Influence of miRNA in insulin signaling pathway and insulin resistance: micro‐molecules with a major role in type‐2 diabetes. Wiley Interdisciplinary Reviews: RNA 5 (5): 697-712. doi:https://doi.org/10.1002/wrna.1240
  117. Satake E, Pezzolesi MG, Md Dom ZI, Smiles AM, Niewczas MA, Krolewski AS (2018) Circulating miRNA profiles associated with hyperglycemia in patients with type 1 diabetes. Diabetes 67 (5): 1013-1023. doi:https://doi.org/10.2337/db17-1207
  118. Jones A, Danielson KM, Benton MC, Ziegler O, Shah R, Stubbs RS, Das S, Macartney‐Coxson D (2017) miRNA signatures of insulin resistance in obesity. Obesity 25 (10): 1734-1744. doi:https://doi.org/10.1002/oby.21950
  119. Cirillo F, Catellani C, Sartori C, Lazzeroni P, Amarri S, Street ME (2019) Obesity, insulin resistance, and colorectal cancer: could miRNA dysregulation play a role? International journal of molecular sciences 20 (12): 2922. doi:https://doi.org/10.3390/ijms20122922
  120. Su Q, Kumar V, Sud N, Mahato RI (2018) MicroRNAs in the pathogenesis and treatment of progressive liver injury in NAFLD and liver fibrosis. Advanced Drug Delivery Reviews 129): 54-63. doi:https://doi.org/10.1016/j.addr.2018.01.009
  121. Soghli N, Ferns GA, Sadeghsoltani F, Qujeq D, Yousefi T, Vaghari-Tabari M (2022) MicroRNAs and osteosarcoma: Potential targets for inhibiting metastasis and increasing chemosensitivity. Biochemical Pharmacology 201): 115094. doi:https://doi.org/10.1016/j.bcp.2022.115094
  122. Saini V, Dawar R, Suneja S, Gangopadhyay S, Kaur C (2021) Can microRNA become next-generation tools in molecular diagnostics and therapeutics? A systematic review. Egyptian Journal of Medical Human Genetics 22 (1): 1-9. doi:https://doi.org/10.1186/s43042-020-00125-w
  123. Saliminejad K, Khorram Khorshid HR, Ghaffari SH (2019) Why have microRNA biomarkers not been translated from bench to clinic? Future Oncology 15 (8): 801-803. doi:https:///doi.org/10.2217/fon-2018-0812