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A B S T R A C T 

Various microorganisms are located on the human skin, mucous 

membrane and inside the human body. Many of these 

microorganisms are beneficial and few are even essential, however, 

some pathogens are known to cause infection and have the ability to 

attack and damage the host tissue. Treatment of infectious bacterial 

disease by antibiotics is one of the major conventional strategies. 

Gram-positive and Gram-negative bacteria have developed 

resistance to conventional antibiotics by various mechanisms, 

including overexpression of efflux pumps, preventing drug 

penetration into the cells, genetic mutations, increased production 

of competitive inhibitors of antibiotics, or overexpression of 

enzymes that inactivate or hydrolyze antibiotics. Consequently, 

finding a new approach to overcome these hindrances is vital for the 

treatment of severe bacterial infections. Nanomaterials can be 

effective therapeutic compounds, with unique properties compared 

to bulk materials. Metal and metal oxide nanoparticles, particularly 

silver nanoparticles, have demonstrated strong antibacterial activity 

against most (if not all) multidrug-resistant bacteria. Several 

antibacterial mechanisms have been proposed for these 

nanoparticles, however, their interaction with bacterial nucleic acids 

is not completely understood, so this review discusses recent 

advances in this area.   
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1. Introduction 

Bacteria are located on the human skin, 
mucous membrane and inside the human 
body. Many are beneficial and few are even 
essential, however, some pathogens are 
known to cause infection. In some conditions, 
these microorganisms have the ability to 
attack and damage the host tissue [1]. 
Treatment of an infectious bacterial disease 
with antibiotics is one of the main 
conventional approaches. After the discovery 
of penicillin in 1928, the golden age of 
antibiotics was from the 1930s to the 1960s, 
when many antibiotics were created, 
unfortunately, this period ended because 

researchers could not keep up with the pace 
of antibiotic discovery against emerging 
resistant pathogens [2]. The main global 
causes of antibiotic resistance are, misuse of 
antibiotics in clinics, poor sanitation leading 
to antibiotic pollution, increased use of 
antibiotics in livestock, and selection pressure 
in patients who do not complete their course 
of drugs [3, 4]. 

Understanding the factors that influence 
the spread of drug resistance is important in 
the search for effective strategies to mitigate 
the resulting damage [5, 6]. In general, 
bacteria display two types of antibiotic 
resistance: 1) intrinsic resistance and 2) 
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acquired resistance [7, 8]. The ability of a 
bacterial species to resist the action of a 
specific antibiotic due to inherent structural 
or functional characteristics is known as 
intrinsic resistance [9-11]. For example, 
Pseudomonas aeruginosa a Gram-negative 
bacterial species represents a very good 
example of intrinsic resistance, due to the lack 
of a sensitive target site for some specific 
antibiotics [12-14]. 

Various other mechanisms may also help 
bacteria to become resistant (the acquired 
resistance) to a variety of antibiotics, such as 
antibiotic efflux due to the presence of 
multidrug efflux pumps that remove all types 
of antibiotics from the bacterial cells, or poor 
drug penetration into the cells thus reducing 
the intracellular concentration of the 
antibiotic. Moreover, genetic mutations can 
alter the expression of the antibiotic target 
protein as an adaptive response, or lead to 
increased production of competitive 
inhibitors of antibiotics, along with antibiotic 
inactivation mediated by enzymes that modify 
(phosphotransferases and acetyltransferases 
modifying aminoglycoside) or hydrolyze (β-
Lactamases hydrolyzing cephalosporins and 
penicillins) the antibiotics [15-18].  

Many bacteria are commonly found in 
biofilms, where they grow embedded in an 
extracellular matrix composed of aggregated 
polymeric materials that surround the 
bacterial cells, and act as a diffusion barrier by 
trapping antibiotic molecules and breaking 
them down [19-21]. These extracellular 
polymeric materials are composed of 
polysaccharides, nucleic acids and proteins, 
and form highly structured networks that are 
resistant to the penetration of small molecules 
[22, 23].  

One of the advantages of using 
nanotechnology in antimicrobial treatment is 
its potential to overcome existing microbial 
resistance, and also to prevent its further 
development [24]. Various organic and 
inorganic nanomaterials have been 
investigated in therapeutic applications to kill 
pathogens and treat infections [24]. The 
advantages of antibacterial nanomaterials 
compared to traditional antibiotics can be 
summarized as: I) overcoming existing 

antibiotic resistance mechanisms by 
disruption of the bacterial membrane and 
prevention of biofilm formation; II) attacking 
microbes using several different mechanisms 
at the same time; III) they can function as 
appropriate and efficient carriers of 

antibiotics [25-28]. Metal or metal oxide 
nanoparticles, particularly silver 
nanoparticles, have been investigated to kill 
bacteria while overcoming common antibiotic 
resistance mechanisms, such as permeability 
regulation, multidrug efflux pumps, antibiotic 
degradation, and gene mutations [29-31]. 

Nanoparticles have sizes of 10-100 nm and 
a high surface-to-volume ratio, providing 
them with greater antibacterial activity 
compared to bulk materials and allowing 
them to interact with biological 
macromolecules, including nucleic acids (DNA 

and RNA), proteins, and carbohydrates [32-
34]. It is worth noting that there is limited 
knowledge about how DNA and RNA respond 
to silver nanoparticles, and what the 
mechanism is. Therefore in this review, we 
discuss the interaction of silver nanoparticles 
with bacterial nucleic acids.  

2. Antibacterial activity of Ag NPs.  

The strong antibacterial activity of AgNPs 
can inhibit or eradicate multidrug-resistant 
bacteria (both Gram-negative and Gram-
positive species) by various mechanisms as 
illustrated in Figure 1 [35]. These mechanisms 
include membrane damage, cytoplasmic 
leakage, protein denaturation, enzyme 
inactivation, ribosomal disassembly, 
production of reactive oxygen species (ROS), 
free radical chain reactions, and finally 
damage to nucleic acids. In addition, Ag NPs 
can be modified with other materials which 
may have biological activity, by using various 
methods, including 3D printing, 
electrospinning, electrophoretic deposition, 
dip coating, drop casting, sol-gel, sol-gel + 
electrodeposition, biomimetic deposition, 
plasma spraying, layer-by-layer deposition, 
ion beam deposition, ion beam-assisted 
deposition, magnetron sputtering, chemical 
vapour deposition, the addition of titania 
nanotubes (TNTs) produced by anodization 
[36].  
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3. Genotoxicity of Ag NPs against bacteria  

The rpsL gene encodes the ribosomal S12 
polypeptide (an essential protein with the 
ability to interface with the decoding site 
resulting in resistance to the error-promoting 
antibiotic streptomycin), and some mutations 
in this gene have been shown to lead to 
changing the resistance capacity to 
streptomycin antibiotics [37]. 

One study investigated the effects of 
different types of silver nanoparticles on rpsL 
replication fidelity, and the frequency of 
mutations. The mutation frequencies were 
1.63%, 1.54%, and 2.15% for silver 
nanopowder, Ag–Cu nanopowder, and 
colloidal Ag, respectively. They proposed that 
the genotoxicity mechanism of AgNPs 

involved increased mutation frequency 
resulting from the binding of AgNPs to 
double-stranded DNA [38]. In another 
comparative study, AgNPs with a mean 
diameter of 16 nm, a zeta potential of −41.2 
mV, and a face-centered cubic crystal 
structure showed a higher affinity for binding 
to double-stranded DNA compared to single-
stranded DNA. The thermal melting 
temperature (Tm: 50°C - 100°C) depends on 
several main factors involving salt amount, 
the composition of nucleotide sequence, and 
the length of DNA. In this regard, 
destabilization of DNA for both mammalian 
(Calf thymus) and bacterial (E. coli and 
Micrococcus lysodeikticus) sources after 
interaction with AgNPs was indicated by a 
reduction in Tm [39].  

 

 
Fig. 1. The major antibacterial mechanisms resulting from the entry of green synthesized AgNPs (G-
AgNPs) by porins or direct interaction followed by ROS production include damaging of the cellular wall, 
membrane, denaturation of biological macromolecules (proteins, enzymes, and DNA/RNA), cytoplasmic 
leakage, and ribosomal disassembly  [35].  

4. Conclusions  

Notwithstanding the enormous success of 
conventional antibiotics in treating bacterial 
infections, the emergence of multidrug 
resistance has led to vital challenges to 
overcoming these bacteria. The improved 
antibacterial activity of nanomaterials in 
comparison with antibiotics may be based on 
several mechanisms, including overcoming 
antibiotic resistance mechanisms, damage to 
the bacterial envelope, and prevention of 
biofilm formation, fighting microbes using 

several mechanisms at the same time, and 
acting as suitable and efficient nanocarriers of 
other antibacterial agents. Silver 
nanoparticles can bind to double-stranded 
DNA and lead to increased mutation 
frequencies in vitro and in vivo. A higher 
affinity for binding to double-stranded DNA 
relative to single-stranded DNA and 
destabilization of DNA as a reduction of Tm 
have been found as the antibacterial functions 
of spherical AgNPs in the genome level. Care 
should be taken to avoid the possibility that 
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AgNPs could increase antibiotic resistance by 
causing mutations in resistance genes. 
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