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A B S T R A C T 

Human beings are sometime expose to the same to predisposing 
factors of a given infectious disease, but the outcome in terms of 
disease manifestation differs greatly. This variation is mainly 
attributed to the genetic makeup of such individuals; this is because 
human genetic has long been associated with the variation in 
susceptibility to various infectious diseases, which is termed as 
genetic resistance. Therefore the aim of this paper was to review the 
state of knowledge on genetic resistance associated with malaria 
infection. Genetic resistance to malaria can be describe as an inherited 
alteration or changes in the genetic material of humans specifically 
DNA molecule and other vital biomolecules which increases the 
chances of resistance to malaria and thus, result in an increased 
survival of individuals with those genetic alterations. In addition such 
changes also affect the general wellbeing and survival of the parasite 
to the extent that the parasite cannot even multiply or replicate itself 
while in such infected erythrocyte. This is because such alteration in 
the DNA molecule interferes with some of the vital chemical and 
biochemical processes of the parasite (Plasmodim spp). Therefore, 
several genetic disorders and or trait which include: Sickle cell 
disease, Glocose-6-Phosphatedehyrogenase deficiency, Pyruvate 
Kinase deficiency, Duffy antigen, Ovalocytocytosis, Thalassemia and 
ABO blood group are known to offer special protection against 
malaria disease in individuals who possessed at least one of such 
disorders or trait. 
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1. Introduction 

Despite the high morbidity and mortality 
rates in malaria-endemic areas, certain people 
are less susceptible to malaria infection than 
others who have recurrent malaria attacks. 
Specific infectious disease resistance can be 
conferred by certain genetic circumstances. 
These genotypes are thought to be preserved 
preferentially in populations that are 
regularly exposed to certain infectious agents, 
particularly those with high virulence[1]. 

 It was For long time that human genetics 
have linked with differences in susceptibility 
to numerous infectious diseases. Of all the 
infectious diseases that affect human 
population, malaria has generated highest 
measurable level of selective pressure on 

human genome[2]. Nevertheless, most human 
genetic factors have been shown to provide 
pertinent protection from the disease, and 
genome-wide inter population variation has 
been linked with resistance or susceptibility 
to malaria. Approximately one-quarter of the 
total variability in malaria incidence is 
accounted for by genetic factors[3]. In 
addition, the outcome of human malaria 
infection is thought to depend on both 
parasite and host genetic factors. Therefore 
genetic resistance to malaria can be describe 
as an inherited alteration and or changes in 
the genetic material of humans specifically 
DNA which increases chances of  resistance to 
malaria and thus, result in an increased 
survival of individuals with those genetic 
alterations [4]. 
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Several genetic disorders, such as Sickle 
cell Disease, Thalassemia, Glucose-6 
phosphatedehydrogenase deficiency (G6PD) 
and Pyruvate kinase deficiency are known to 
have caused and confer  resistance to 
Plasmodium malaria infection [5]. The 
presence of such genotypes is largely and 
likely due to evolutionary pressure exerted by 
the parasites of the genus Plasmodium which 
cause malaria. This is because, the parasite 
infects red blood cells (RBCs), these genetic 
changes are most commonly alterations to 
molecules essential for red blood cell function 
and therefore parasite survival, such as 
haemoglobin or other cellular proteins and or 
enzymes of RBCs. These alterations generally 
protect RBCs from invasion by Plasmodium 
parasites and or replication of the parasites 
within the red blood cell, hence prevent the 
development of the parasite and thus, 
establishment of the disease [6, 7]. 

In anthropology and human genetics, 
genetic adaptation to malaria is a long-
standing research area. Several malaria-
endemic regions have reported red blood cell 
(RBC) abnormalities, including those with 
change in Red Blood Cell (RBC) shape, for 
example sickle cell disease that are thought to 
confer resistance to malaria. The defect 
distribution supports the theory that subsets 
of RBC faults became prominent due to 
natural selection by malaria [8]. 

Malaria has been a major driver of 
evolutionary selection on the human genome 
for almost half a century, and some 
hematological abnormalities have increased in 
frequency in malaria-endemic areas because 
they lessen the chance of mortality from 
malaria. For example, lack of Sickle 
hemoglobin (HbS) and glucose-6-phosphate 
dehydrogenase (G6PD) are frequently cited 
instances of natural selection due to malaria, 
and many other genetic connections with 
malaria resistance or susceptibility have been 
found [9]. Furthermore, malaria resistance 
has been linked to a number of other 
disorders, including hemoglobinopathies, 
enzymopathies, and the lack of an erythrocyte 
surface protein. Other genetic disorders can 
cause malaria resistance, but these three in 
particular offer unique insights into anti-
malarial techniques. These situations have 

provided the incentive for researchers to 
better understand the genetic underpinnings 
of resistance, which could be used to design 
new medicines or improve existing ones [10]. 
As a result, malaria resistance genes are the 
best illustration of human population natural 
selection. Furthermore, a number of other 
host genetic variations influence illness risk 
and/or appearance [11]. 

Understanding the genetic basis of malaria 
resistance and susceptibility is critical for 
developing effective medicines, vaccines, 
diagnostics, and risk prediction tools, as well 
as understanding the molecular mechanisms 
of host-parasite interactions. According to 
population genetics studies, genetic variables 
may account for a considerable amount of the 
variation in malaria incidence among persons 
living in malaria-endemic areas. Furthermore, 
both parasite and host genetic variables are 
known to influence the fate of human malaria 
infection [12-15]. This suggests that, in 
addition to the well-known genetic variants in 
red cell components, there are a number of 
other genetic changes that affect malaria 
susceptibility, but with a less evident 
phenotype. It's not surprising, then, that all 
components of RBC, including hemoglobin (S, 
C, E, and thalassemia), membrane antigens 
(Duffy antigen, ovalocytosis, and blood group 
O), and enzymes (G6PD), play a role in malaria 
prevention[16]. 

2. Sickle cell disease 

Haemoglobinopathies are thought to 
protect against severe life-threatening malaria 
manifestations. The most important of these is 
the sickle cell disease (SCD) mutation, which 
reduces the risk of severe Plasmodium 
falciparum malaria in children in Sub-Saharan 
Africa by 90%. Sickle cell disease is a 
hereditary chronic haematological illness 
caused by a single mutation in the globin gene 
that causes Glutamic acid to be replaced by 
Valine at position 6 of the peptide [17]. In 
tropical Africa, SCD is a severe health issue 
that the World Health Organization has 
designated as a public health priority. The 
resistance it confers to Plasmodium 
falciparum malaria in its heterozygous state, 
known as sickle cell trait (SCT), has been 
credited to its persistence in human 
populations [18]. The sickle allele (HbS) is 
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found all over the world, and while the sickle 
cell disease (HbSS) has grave effects for the 
carrier, the heterozygote condition (HbAS) is 
often phenotypically normal and is linked to 
lower malaria susceptibility [19]. 

The presence of Haemoglobin S (HbS), an 
aberrant form of the oxygen-carrying protein 
in the red blood cell, causes sickle-cell disease. 
The disease is caused by inheriting the sickle 
cell gene from both parents, whereas 
inheriting the gene from only one parent 
causes the sickle cell trait, which is normally 
asymptomatic(Figure 1). Sickle cell disease is 
marked by chronic haemolytic anemia 
interspersed with abrupt exacerbations of 
sickness known as crises[20]. Because 
polymers cause biochemical and rheological 
changes in RBCs, forming aggregates, blood 
flow is impaired, resulting in haemolytic 
anemia, bone pain crises, increased 
susceptibility to infections, particularly with 
encapsulated organisms like Streptococcus 
pneumoniae, and finally organ dysfunction 
[21]. In locations where mosquitoes and 
falciparum malaria are endemic, the sickle cell 
gene is most common [22], this is because of a 
survival benefit in carriers against death due 
to Plasmodium falciparum malaria, 
haemoglobin S (HbS) has been selected to 
high frequencies in many tropical 
communities [23]. 

In the case of Sickle Cell Disease, it was 
suggested that, while sickle-cell homozygous 
individuals usually die before adulthood, the 
gene responsible for Sickle Cell Disease could 
reach high frequencies due to malaria 
resistance conferred by the heterozygous 
carrier state, resulting in a balanced 
polymorphism; it has been observed that P. 
falciparum development in HbS-containing 
red cells is difficult, and it is also rare to find 
an HbS carrier struck by cerebral malaria, a 
common cause of death in this disease [24, 
25]. There is also substantial evidence that 
patients with sickle cell anaemia (SCA) are 
protected from malaria infection, both in 
terms of the incidence of infection and the 
density of parasites [26, 27]. 

Despite the fact that sickling of infected 
RBCs, increased splenic phagocytosis, 
premature haemolysis, and parasite death 

have all been identified as major human 
malaria resistance factors, individuals with 
homozygous form of the gene (HbSS) are at 
greater risk, the exact mechanism of 
resistance is unknown, and various 
mechanisms to explain AS malaria resistance 
have been proposed, including sickling of 
infected red [28]. 

 
Fig. 1. Normal and Sickle Erythrocyte [29] 

Therefore, to this effect there are various 
explanations as to why people with sickle cell 
trait are malaria resistant or have milder 
episodes, this is due to the fact that they are 
hosts to weaker and fewer parasites. Other 
possible explanations are: an acid is produced 
by the parasite inside the red cell, therefore 
HbS has a tendency to polymerize in the 
presence of the acid, causing the cell to sickle 
[30]. Because sickle cells are killed as blood 
passes through the spleen, parasites are also 
destroyed. Secondly, malaria parasites do not 
survive in low-oxygen environments. Because 
the spleen has low oxygen levels and diseased 
red cells tend to become trapped there, they 
may be killed there [31]. Another thing that 
happens when the temperature is low is that 
potassium seeps out of HbS-containing cells, 
and to develop, the parasites require a high 
potassium level. Therefore this could explain 
why the parasite doesn't grow in HbS-
containing red blood [32, 33].  

3. G6PD 

The major enzyme in the oxidative pentose 
phosphate pathway, G6PD, transforms 
Nicotinamide Adenine Dinucleotide 
Phosphate (NADP) to its reduced form, 
NADPH. In erythrocytes, NADPH is required 
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for defense against oxidative stress. G6PD 
deficiency makes erythrocytes more 
vulnerable to hydrogen Peroxide (H2O2 ) and 
other reactive oxygen species, which can 
induce hemolytic anemia, favism persistent 
non-spherocytic hemolysis, and spontaneous 
miscarriages [34]. The most frequent 
enzymopathological disease in humans is 
G6PD deficiency. A widespread, heritable X-
chromosome related defect is described as 
this disease. 

In malaria-endemic regions such as Asia, 
Africa, Central and South America, highly 
polymorphic frequencies, which are markers 
of G6PD deficit, are detected, whereas in non-
endemic regions, these rates decrease, 
implying a link between G6PD deficiency and 
malaria [35]. Two key results emerge from 
this relationship, one of them is that G6PD 
deficiency protects against malaria infection, 
particularly falciparum infections. G6PD 
deficiency, on the other hand, has lately been 
shown to create major issues in the fight 
against malaria. Erythrocytes that lack G6PD 
are more vulnerable to injury [34]. Malaria 
parasite penetration worsens the situation, 
rendering the cells more vulnerable to 
phagocytosis. Infected G6PD-deficient 
erythrocytes have a distinct morphology than 
non-infected ones, making them more 
vulnerable to phagocytosis [10]  

This protection's specific mechanism is 
currently unknown. However, two theories 
have been proposed. According to the first 
theory, parasites that cause malaria can only 
thrive in low-oxygen environments. This 
indicates how vulnerable these parasites are 
to oxidative stress. Plasmodium parasites 
oxidize NADPH and diminish the level of 
reduced glutathione (GSH) in erythrocytes, 
according to the second theory [36]. This 
impact becomes more severe in the presence 
of G6PD deficiency, causing oxidative damage 
to erythrocytes. Furthermore, Plasmodium 
parasites degrade hemoglobin and produce 
toxic components such as iron, which cause 
hemolysis, as a result, Plasmodium parasite 
development rates are reduced. Additionally, 
the immune system uses phagocytosis to 
destroy RBCs that have been damaged by 
oxidative stress. Because it happens at the 
early ring-stage of parasite maturation, its 

removal significantly reduces parasite growth 
[37]. As a result, all of these findings suggest 
that G6PD deficiency can protect against 
malaria infections. 

4. Deficiency in Pyruvate Kinase (PK) 

Pyruvate kinase is an enzyme that 
catalyzes the conversion of 
Phosphoenolpyruvate (PEP) to pyruvate, 
resulting in the production of ATP from 
Adenosine Diphosphate (ADP). Because 
erythrocytes lack mitochondria, a Pyruvate 
Kinase shortage leads in decreased intra-
erythrocytic ATP, which cannot be 
compensated for by oxidative 
phosphorylation. This causes spleen 
membrane injury, haemolysis, and premature 
destruction [38]. The PK-LR gene, found on 
chromosome 1, regulates the production of 
PK. Over 150 distinct mutations in the PK-LR 
gene have been linked to PK deficiency so far 
[39]. Loss-of-function mutations in the PKLR 
gene cause PK deficiency, which is the most 
prevalent inherited glycolysis condition in 
humans, it is inherited as an autosomal 
recessive characteristic [40]. 

Pyruvate kinase deficiency causes 
erythrocyte membrane stiffness to change, 
thereby inhibiting Plasmodium infection. 
Furthermore, pyruvate kinase deficit 
decreases the intracellular concentration of 
glucose, a critical source of energy for 
Plasmodium's intracellular life cycle [10], 
making Pyruvate Kinase an important target 
for medicines and vaccines against 
Plasmodium falciparum infection. 

5. Duffy Antigen  

After the genes for sickle cell anaemia, 
thalassemia, and G6PD, the Duffy antigen gene 
is the fourth gene linked to malaria resistance. 
The Duffy antigen, which is found on both the 
red and white blood cell surfaces, was 
identified in 1950 [41] and is named for the 
patient who discovered it [42]. 

The impact of Duffy antigen on malaria 
infection genetic resistance is mostly linked to 
Plasmodium vivax and Plasmodium knowlesi. 
Plasmodium vivax causes a milder sickness, 
but it can be severe, and recurring episodes 
are linked with significant morbidity. Because 
the human population in Africa is primarily 
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Duffy antigen negative, vivax malaria is 
substantially less common [43]. The Duffy 
antigen forms an irreversible junction 
important for merozoite invasion of 
reticulocytes on erythrocytes, acting as a 
receptor for invasion by the human malaria 
parasites P. vivax and P. knowlesi [44]. The 
Duffy blood group antigen, also known as the 
Duffy antigen/receptor for chemokines 
(DARC) or the FY gene, has been found as a 
scavenger on the surface of RBCs that 
removes excesses of circulating harmful 
chemokines. This is  the key molecule that 
allows Plasmodium vivax and Plasmodium 
knowlesi parasites to invade red cells via the P. 
vivax Duffy binding protein (PvDBP)[45]. 
Because polymorphisms modify the binding to 
the parasite's DBP and the density of the 
antigen on the erythrocyte surface, different 
susceptibilities to P. vivax have been linked to 
the Duffy blood group antigens [46]. 

A single-nucleotide polymorphism (SNP) in 
a GATA-1 transcription factor binding region 
of the gene promoter (33T C) that controls 
erythroid production explains Erythrocyte 
Duffy negativity [47], glycosylated membrane 
protein is the protein encoded by this gene. 
The Duffy antigen receptor gene is found on 
chromosome 1's long arm. It is a broad 
receptor with some chemokine specificity. 
This genetic anomaly is the only malaria 
genetic defense mechanism that hasn't been 
linked to any harmful effects on human health. 
Duffy antigen protein expression is affected by 
polymorphisms in the DARC gene, which 
determines the Duffy blood group system 
[48]. In the case of malaria, Duffy blood group 
negative is common among Africans and 
makes erythrocytes resistant to Plasmodium 
vivax and Plasmodium knowlesi infection [42]. 

Before its function was revealed in the 
1970s, epidemiological studies had suggested 
Duffy negativity as a susceptibility factor. 
Merozoite invasion is thought to be resistant 
in Duffy negative individuals whose 
erythrocytes do not express the receptor [49]. 
Erythrocytes responsible for Duffy negativity 
are only found in West Africa and their New 
World descendants, including the vast 
majority of Afro-Americans, carry Duffy 
negativity in the form of heterozygotes, and 
the only area on the planet where 

homozygotes for Duffy negativity exist is in 
the United States. In other ethnic groups, this 
genetic anomaly is extremely unusual. Duffy 
negativity is so powerful at protecting against 
vivax malaria that some US researchers failed 
to infect volunteers with P. vivax on purpose 
[50]. Therefore the link between the Duffy 
blood group (FY) and human malaria caused 
by P. vivax has been well documented, with 
Duffy-negative individuals naturally resistant 
to infection [51]. 

6. Ovalocytosis  

Ovalocytosis is one of the many changes 
that can occur in the membrane protein of a 
red blood cell. Is a syndrome that can be 
caused by a variety of genetic mutations and 
is thought to be a powerful malaria-protective 
candidate [52]. Ovalocytosis is caused by a 9-
amino-acid deletion in the erythrocyte 
membrane band 3 gene on chromosome 17, 
resulting in a functional deficiency of the band 
3 proteins on the erythrocyte membrane [8]. 
The cytoplasmic domain preserves cell shape 
by linking the cell membrane to the cell 
cytoskeleton, and the trans-membrane 
domain boosts the blood's capacity to carry 
carbon dioxide by exchanging intracellular 
bicarbonate for chloride [53]. Ovalocytosis is a 
clinically asymptomatic condition marked by 
the oval shape of RBCs. In Southeast Asia and 
Melanesia, this type of heredity has been 
extensively seen, with prevalence rates as 
high as 50% in some groups [8]. Despite the 
fact that it is most typically asymptomatic, the 
illness has been linked to moderate 
haemolysis symptoms such as intermittent 
jaundice and gallstones. 

Many erythrocyte antigens are expressed 
less strongly in ovalocytic erythrocytes. 
Ovalocytes are notable for their in vitro 
resistance to several strains of malaria, 
including Plasmodium falciparum and 
Plasmodium knowlesi. Furthermore, in areas 
where malaria is endemic, ovalocytic subjects 
have lower numbers of intracellular parasites 
in vivo [54]. 

7. Thalassemia  

Thalassemias are a group of diseases 
caused by one of the many genetic 
abnormalities linked to a reduction in the 
synthesis of one or more globin chains [55]. 
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Human thalassemias are the most frequent 
Mendelian disorders and represent a serious 
worldwide health concern. They are a set of 
clinical illnesses caused by deletions or other 
disturbances that result in faulty production 
of α- or β-globin chains on chromosome 11 
and 16 [56]. The wide range of clinical 
phenotypes reflects the wide range of genetic 
variants that exist, and the fact that α+-globin 
is produced by two identical genes, HBA1 and 
HBA2, adds to the complexity. In general, 
homozygous thalassemia causes serious 
sickness or death, but heterozygotes are 
healthy with the exception of moderate 
anaemia. When one of the HBA1 or HBA2 
genes, but not both, is disrupted, some a-
globin can be produced. This is classified as " 
α+ thalassemia," and homozygotes with this 
disease are only moderately anemic. 
Thalassemia is thought to be the world's most 
common single-gene illness [19]. In numerous 
malaria-endemic locations, such as the 
Mediterranean, Southeast Asia, Africa, and the 
Indian subcontinent, the prevalence of -
thalassemia is relatively high [57]. 

Population genetic studies and the extreme 
diversity of the molecular basis of these 
conditions provided the initial evidence that 
both forms of thalassaemia protect against 
malaria [58]. The presence of thalassemia and 
malaria has been shown to protect infected 
hosts from malaria caused by Plasmodium 
falciparum [59]. The α-thalassaemias are 
among the most well-known malaria-
protective polymorphisms, with rates as high 
as 80% in some groups. They are now 
considered the most frequent monogenic 
illnesses in humans. Nonetheless, both the 
mechanisms of protection and their malaria 
specificity are unknown [60]. However, 
different hemoglobinopathies (sickle-cell trait, 
beta thalassemia trait, homozygous HbH, 
HbAS) have different mechanisms conferring 
protection against severe and complicated 
malaria [61]. Reduced parasite erythrocyte 
invasion, decreased intra-erythrocytic 
parasite growth, enhanced phagocytosis of 
parasite-infected erythrocytes, and increased 
immune response against parasite-infected 
erythrocytes are among the most important 
mechanisms [62]. 

 

8. ABO-Blood group vii 

The clinical outcome of falciparum malaria 
in endemic areas is linked to erythrocyte 
polymorphisms, including the ABO blood 
groups, among other things. The ABO blood 
group is a collection of carbohydrate antigens 
found on human erythrocytes and other cells 
[63]. The ABO blood group system is 
undoubtedly the most well-known, yet 
functionally perplexing, human genetic 
variation. ABO is the most important system 
for blood group compatibility in clinical 
practice [64]. 

The development of a protective immune 
response by the host is required for Malaria 
resistance. The ABO blood type is thought to 
play a key role in malaria protection, 
particularly severe malaria. There are three 
alleles in the ABO blood group gene: A, B, and 
O it determines an individual's blood group by 
coding for different forms of agglutinogens 
bound to the surface of RBCs [65]. Individuals 
with blood group "A" have been reported to 
be particularly vulnerable to falciparum 
malaria, whilst those with blood group "O" are 
said to be protected from more complex 
instances. Individuals with blood group "O" 
have been found to have low parasitaemia and 
uncomplicated P. falciparum malaria [63]. 
Several possible pathogenic mechanisms 
attributed to the cause of severe infection 
include cyto-adherence and rosetting. A link 
has been shown between the 'O' blood group 
and decreased rosetting capability [66]. 

The frequency of rosetting parasites in 
blood isolated from group O patients was 
lower than in blood isolated from patients 
with blood groups A, B, and AB, according to 
clinical studies conducted in Thailand and 
East Africa [67]. P. falciparum creates rosettes 
with group O RBCs with a lower frequency 
than group A and B RBCs, according to other 
research. Furthermore, rosettes formed by 
group O RBCs are smaller and more easily 
disturbed than rosettes formed by groups A, 
B, and AB erythrocytes [68]. It has been 
discovered that the Plasmodium parasite has a 
reduced ability to infiltrate group O 
erythrocytes. While macrophages that target 
P. falciparum-infected erythrocytes have been 
demonstrated to clear infected group O 
erythrocytes more readily than infected A and 



2022, 2(2): 116-128                                                                                                                               Cell. Mol. Biomed. Rep. 

122 | P a g e  
 

B erythrocytes, this could indicate that group 
O is resistant to the severe form of malaria. 
This link is supported by the fact that blood 
group O is more prevalent in malaria-endemic 
Sub-Saharan Africa than in other regions of 
the world [65]. 

The A and B antigens are trisaccharides 
coupled to separate glycolipids and 
glycoproteins on the erythrocyte surface: A, 
GalNAca1-3(Fuca1-2) Gal1b1; and BGal1a1- 
3(Fuca1-2) Galb1. The enzyme 
glucotransferase is required for the synthesis 
of antigens A and B. Blood type 'O,' on the 
other hand, has a disaccharide H antigen 
(Fuca1-2Galb1) due to the lack of the enzyme 
glucotransferase. Variations in the gene 
encoding functional glucotransferase have 
been linked to protection against severe P. 
falciparum malaria, and a recent genome wide 
association study has confirmed this. The 'A' 
and 'B' blood group tri saccharides are 
thought to operate as receptors and are a 
crucial factor in rosetting on uninfected RBCs. 
They bind to parasite rosetting ligands such 
PfEMP-1 and trigger sequestering [69]. In 
comparison to blood groups A, B, and AB, 
RBCs of blood group 'O' do not express tri-
saccharide, and rosettes generated by infected 
'O' blood group RBCs are smaller and more 
easily destroyed. Because the A and B 
trisaccharides are known to have a role in 
rosette formation, blood group O may be a 
protective factor against severe malaria due to 
its rosette-reducing properties [70] . 

Finally, Malaria cases are less likely to be 
severe in people with blood group O, but 
much more severe in those with blood group 
AB. Individuals with blood group O tend to be 
less susceptible to the severe illness produced 
by Pf infection. Because parasite density does 
not necessarily predict survival, clinical 
severity, rather than the incidence or 
prevalence of detectable parasitemia, is a 
more meaningful outcome to measure ABO 
group and survival[69]. 

9. Conclusion 

Genetic resistance to malaria definitely 
demonstrate high level of potentiality in 
drastically reducing the menace of malaria 
disease through various mechanisms, as all 
these disorders prevent successful survival 

and or replication of the parasite (P. 
falciparum) in the erythrocyte. Though some 
of these genetic disorders like sickle cell 
disease in most cases are deleterious to the 
survival of the host while others like Duffy 
antigen are not. Splenic phagocyotosis, 
Premature haemolysis of the infected 
erythrocyte, oxidative stress/damage, 
increased stiffness of the infected 
erythrocytes especially in P.vivax and 
P.knowlesi, reduced parasite invasion and 
increased immune response against parasite 
infected erythrocyte are some of the main 
techniques adopted by the host as a result of 
genetic variability to genetically resist to the 
adverse consequences of malaria parasite.  

Abbreviation 

G6PD:glucose-6-phosphate dehydrogenase 

RBCs: red blood cells 

SCD: sickle cell disease 
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