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A B S T R A C T 

Bacterial infections can be caused by contamination of labile blood 

products with specific bacteria, such as Staphylococcus aureus and 

Staphylococcus epidermidis. Hospital equipment, bio-protective 

equipment, delivery systems, and medical devices can be easily 

contaminated by microorganisms. Multidrug-resistant bacteria can 

survive on various organic or inorganic polymeric materials for 

more than 90 days. Inhibiting the growth and eradicating these 

microorganisms is vital in blood transfusion processes. Blood bags 

and other related medical devices can be improved by the 

incorporation of organic or inorganic nanomaterials, particularly 

silicon dioxide (SiO2) nanoparticles. The addition of solid organic or 

inorganic nanoparticles to synthetic polymers or biopolymers can 

provide new properties in addition to antimicrobial activity. Among 

these NPs, formulations composed of SiO2 nanoparticles and 

polymers have been shown to improve the mechanical and 

antimicrobial properties of catheters, prosthetic inserts, blood bags, 

and other medical devices SiO2 nanoparticles possess several 

advantages, including large-scale synthetic availability, simple one-

pot synthesis methods, porous structure for loading antibacterial 

agents, good biocompatibility, and thermal stability. Plasticized 

polyvinyl chloride is the main polymer, which has been 

functionalized by these nanoparticles. In this review, we discuss the 

recent advances and challenges regarding the functionalization of 

polyvinyl chloride by SiO2 nanoparticles to hinder bacterial 

contaminations in blood products.   
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1. Introduction 

Blood banks are responsible for ensuring 
the safe supply of blood products to hospitals 
to meet the needs of transfusion medicine. 
The need for blood transfusions and the 
selection of blood products are governed by 

the treatment priority, as well as the age and 
sex of the patient [1]. The main constraint 
during transfusion is the availability of 
donations, where any ABO blood group 
incompatibility that may cause transfusion 
reactions should be avoided [2]. Plasma, 
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platelet concentrates (PC), and red blood cells 
(RBCs) are obtained by centrifugation and 
filtration of whole blood and represent the 
products most frequently used in transfusion 
[3]. Plasma is mainly administered in cases of 
trauma [4], RBCs are one of the only 
treatments to restore tissue oxygenation [5], 
while PCs are mainly used to prevent or treat 
bleeding in patients with thrombocytopenia 
[6]. 

The volume of a whole blood donation is 
usually 450 mL ±10%, and samples undergo 
leucodepletion, (often by filtration) for 
removing the immune cells from the blood [7]. 
In some cases, whole blood donations have 
the leukocytes removed (below the limit of 5 
million per unit) followed by mixing the RBCs 
with an additive solution and are stored in a 
blood bag composed of di(2-ethylhexyl) 
phthalate and polyvinyl chloride (PVC) [8]. 
The type of treatment process favored by each 
blood bank is chosen based on several factors, 
each with advantages and disadvantages [9]. 
Generally, donors must wait for a minimum of 
56 days between donations,  except for certain 
circumstances, which can have a negative 
impact on supply capacity [10]. For example, 
women are sometimes called upon to prolong 
their inter-donation time interval in response 
to abnormally low iron stores caused by 
menstruation [11]. In addition, blood 
donations can be collected using apheresis (a 
medical technology for separating the soluble 
and cellular components of blood) [12]. The 
advantage of this procedure comes from the 
fact that it is possible to return unwanted 
blood components to the donor. Moreover, 
apheresis allows the collection of several 
blood products simultaneously. In this way, 
the apheresis process can allow higher 
donation frequencies closely spaced together 
[13].  

2. Bacterial contaminations of blood 
products  

Hospital equipment, bio-protective 
equipment, delivery systems, and medical 
devices may be easily contaminated by 
microorganisms. Microorganisms such as 
multidrug-resistant bacteria can survive on 
various organic or inorganic polymeric 
materials for more than 90 days and can lead 
to the transmission of infectious diseases [14]. 

Blood banks have invested considerable time 
and effort in the adoption as well as the 
optimization of the efficiency of various 
contaminant detection methods. An analytical 
test for the detection of bacteria must not only 
be generic, in order to detect all possible 
strains but also highly sensitive to detect the 
presence of bacteria at very low numbers [15-
18]. Recently, the standard techniques for 
automated bacterial detection are based on 
the growth of bacteria such as Staphylococcus 
epidermis and Staphylococcus aureus in a non-
specific medium both in aerobic and 
anaerobic conditions. This allows the 
detection of bacteria at concentrations as low 
as 1 to 10 colony forming units (CFU) per 
milliliter [19-21]. Additional analytical 
techniques such as Real-Time Polymerase 
Chain Reaction (RT-PCR)  for the detection of 
bacterial contaminants in blood products in a 
blood bank can be highly sensitive [22, 23]. 
Because it is not possible to analyze the entire 
volume of the labile blood product (LBP) in 
blood storage bags, bacterial testing can be 
rapidly carried out using the Matrix-Assisted 
Laser Desorption Ionization–Time Of Flight 
Mass Spectrometry (MALDI-TOF MS) 
technique on a small sample [24, 25]. 

Sending blood products to hospitals before 
obtaining the results of microbiological 
testing entails a potential risk involving the 
transfusion of contaminated or toxic blood 
products. Since the analytical process is 
lengthy, PCs with a short shelf life can actually 
be sent to hospitals before obtaining the final 
results to limit product losses [26, 27]. On the 
other hand, an analysis of risks is required 
and all contaminated products must be traced 
and removed from inventories. If any 
contaminated product has been transfused, 
medical steps must be taken to ensure patient 
safety [28, 29]. 

3. Antibacterial and antiadhesive coatings   

Materials that make up medical devices, 
such as blood storage bags and catheters have 
gradually evolved along with the development 
of plastic tubes [30, 31]. Different materials or 
biomaterials such as thermoplastics (PVC and 
polyethylene), thermosetting polymers 
(cross-linked polyurethane, PUR), flexible 
elastomers (silicones and linear PUR), or 
cellulose can be used to fabricate catheters 
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[32-34]. Polyethylenes and PVC can be 
functionalized with various materials, such as 
polyglycidyl methacrylate allowing 
biodegradation in physiological conditions 
[35]. Urinary catheters are mainly based on 
PUR, and their properties vary depending on 
the nature of the additives and plasticizers 
used in their manufacture [36]. Moreover, 
silicone, polysiloxane, or 
polydimethylsiloxane [(CH3)2-SiO] polymer 
chains (Figure 1) with different lengths and 
molecular weights are attractive synthetic 
polymers, with suitable thermal stability, 
resistance to physical aging, flexibility, 
biocompatibility, and hydrophobic properties 
[37-40]. 

 
Fig. 1. Polysiloxane (a) or polydimethylsiloxane 

monomers(b)(https://pubchem.ncbi.nlm.nih.gov).  

Many approaches are available for the 
modification and functionalization of the 
surface of organic or inorganic polymers, such 
as cold plasma surface treatment, which has 
been tested to prevent the colonization of 
bacteria [41, 42]. The coating of hydrophobic 
polymers with polyethylene glycol (PEG) 
chains using physical or chemical bonding to 
form the shape of a brush or a mushroom, has 
been tested in recent investigations to 
produce or modify polymers for different 
medical applications [43-45]. The goal is to 
generate a biocompatible interface, where this 
inert layer acts as a barrier to prevent non-
specific biological interactions [46, 47]. For 
instance, adding a brush-like polymer appears 
to minimize the adsorption of proteins or cells 
onto the PVC surface [48]. However, few 
investigations have been carried out on the 
effects of PVC coated with brush-like 
polymers when in contact with blood or blood 
products [46, 49]. Moreover, other polymers, 
such as poly(butylene adipate-co-
terephthalate) prepared as a thin film filled by 
SiO2NPs via a solvent casting method were 

used for inactivation of E. coli and S. aureus 
bacteria [50]. Some research has been done 
on surface modification with antimicrobial 
peptides (AMP) as amphiphilic cationic 
structures, which can bind to anionic bacterial 
membranes by electrostatic attraction leading 
to bacterial death [51]. The mechanism of 
action of AMPs remains complex and poorly 
studied, and the main problem associated 
with the clinical use of AMPs is their possible 
cytotoxicity [52]. 

4. Surface modification by SiO2 NPs  

The addition of solid organic or inorganic 
nanoparticles (NPs) to synthetic polymers or 
biopolymers can provide new properties in 
addition to antimicrobial activity [53-56]. 
Among these NPs, formulations composed of 
silica NPs (SiO2) and polymers have been 
shown to improve the mechanical and 
antimicrobial properties of catheters, 
prosthetic inserts, blood bags, and other 
medical devices [57]. SiO2 NPs can be 
prepared by three main methods, the Stober 
process (using a precursor of tetraethyl 
orthosilicate), green synthesis, and 
microemulsion based on water-in-oil (W/O) 
reverse micelles or oil-in-water micelles [58, 
59]. The antimicrobial properties of SiO2NPs 
are most often associated with their surface 
functionalization, and any process that leads 
to their agglomeration can present a major 
disadvantage [60].  

Recently, several studies have described 
smart antibacterial biomaterials, thin films, 
hydrogels, and nanoparticles, which can 
respond to pH changes, magnetic fields, 
electric currents, temperature, light, as well as 
hydrophobic properties to be used as a 
medical antibacterial and antiadhesive 
coatings (MAAC) [61-64]. More specifically, 
functionalized SiO2 NPs can be incorporated 
into the PU matrix used during its synthesis to 
provide multifunctional capabilities [65]. The 
coating should have repellent properties so 
that bacteria cannot attach to the surface of 
materials coated by MAACs, and it can exhibit 
antimicrobial activity by binding to proteins 
associated with bacterial adhesion [66].  In 
the light of current knowledge on the 
mechanisms of action of MAACs, SiO2 NPs can 
bind specifically to saccharides contained in 
the peptidoglycan layer of bacteria, thus 

https://pubchem.ncbi.nlm.nih.gov/
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inducing an osmotic change leading to cell 
death [67]. It is expected that the activity of 
MAACs is more important for Gram-positive 
bacteria owing to their thicker cell wall and an 
accessible layer of peptidoglycan. In fact, the 
main structural element of Gram-positive 
bacteria is the peptidoglycan layer, essential 
for their viability, metabolism, and influx and 
efflux of molecules, including antibiotics [68]. 
The peptidoglycan layer provides rigidity to 
the cell, with a thickness varying between 30-
100 nm. In contrast, the peptidoglycan layer 
of Gram-negative bacteria is only ~3 nm thick 
and its structure is more complex since it is 
located between the cytoplasmic and outer 
membranes [69]. As shown in Figure 2, other 

components of the bacterial envelope, 
including capsule, fimbriae, pilus, flagellum, 
teichoic acid and lipoteichoic acid of Gram-
positive bacteria, and lipopolysaccharide of 
Gram-negative bacteria could be targeted by 
functionalized SiO2NPs [68]. In order to 
achieve synergistic antimicrobial activity 
against bacteria or viruses, antibacterial or 
antiviral agents such as metals, metal oxide 
NPs or antibiotics can be employed to 
functionalize SiO2NPs to produce reactive 
oxygen species (ROS) that can then damage 
biological macromolecules (Figure 3e) [70-
72]. The use of organosilane-based coupling 
agents is the main way to prepare different 
derivatives of SiO2NPs (Figure 3a-3d) [58, 73].  

 

Fig. 2. a) Structure of bacterial cells; b) Structural difference between Gram-positive and Gram-negative 

bacteria (copyright under license https://creativecommons.org/licenses/by/4.0/) [68].  

https://creativecommons.org/licenses/by/4.0/
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Fig. 3. Common organisilane coupling agents: (a) 3-aminopropyl-triethoxysilane; (b) vinyltriethoxysilane; 

(c) 3-Mercaptopropyl-trimethoxysilane; (d) methoxy-PEG-silane: (e) production of ROS upon 

photocatalytic activity of SiO2-Ag nanocomposites. VB and CB are the valence band and conduction band, 

respectively. All images have been distributed under the terms of the Creative Commons Attribution 

License (CC BY) [58, 73].  
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5. Conclusions  

Plasticized polyvinyl chloride is the main 
polymer used to produce blood bags, which 
can be functionalized by SiO2NPs. These NPs 
can specifically bind to the saccharide 
residues of the peptidoglycan layer of the 
bacteria, thus inducing an osmotic change 
leading to cell death. Both bare and modified 
SiO2NPs have advantages, including large-
scale synthetic availability, simple one-pot 
synthesis method, thermal stability, good 
biocompatibility, and a porous structure for 
loading with antibacterial agents. Several 
components of the bacterial envelope include 
the capsule, fimbriae, pilus, flagellum, teichoic 
acid, and lipoteichoic acid of Gram-positive 
bacteria, as well as the lipopolysaccharide of 
Gram-negative bacteria, can be targeted by 
functionalized SiO2NPs. To provide synergistic 
antibacterial activity and decrease 
cytotoxicity, both antibacterial agents and 
biocompatible materials have been employed 
to functionalize SiO2NPs. The application of 
organosilane-based coupling agents is the 
main route to preparing nanocomposites 
based on SiO2NPs combined with PVC. 
However, the antimicrobial properties of 
SiO2NPs are mostly associated with their 
surface functionalization, but their 
agglomeration in contact with blood products 
is an undesirable effect. Therefore, more 
investigations are needed to overcome these 
hindrances to obtain more effective 
antiplanktonic and antibiofilm materials 
composed of SiO2NPs combined polymers 
(specifically PVC) in medical devices suitable 
for blood transfusion medicine.  
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