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A B S T R A C T 

The applications of nanoparticles in various practical fields, owing 

to their unique properties compared with bulk materials, have been 

occupying the minds of scientists for several decades. In this regard, 

a combination of pharmacology and nanotechnology has 

contributed to orpgnicud  newer effective anticancer and 

antimicrobial agents to inactivate resistant cancer cells and 

microorganisms, specifically multidrug-resistant ones. The 

physicochemical properties of nanoparticles based on metalloid, 

metal, and metal oxides such as selenium, silver, gold, titanium 

dioxide, zinc oxide, copper oxide, platinum, and magnesium oxide, 

have been well known and referred to as anticancer and 

antimicrobial agents or carriers. The inactivation and eradication of 

Gram-positive and Gram-negative bacteria may be mainly resulted 

from the oxidative damages in the bacterial medium. Overall, 

metalloid, metal and metal oxide NPs can be functionalized by other 

antibacterial or anticancer agents and biocompatible stabilizers to 

increase their efficiency in physiological conditions. However, the 

undesirable cytotoxicity of these nanoparticles in physiological 

conditions is the major hindrance to their application in the 

pharmaceutical industry and therapeutics. Nevertheless, it is 

expected that these problems will be solved in the near future. 

Therefore, the main objective of this review is to report an overview 

of the recent signs of progress in increasing anticancer and 

antibacterial mechanisms of metal and metal-based nanoparticles. 

Article info 

Received: 17 Oct 2021 

Revised: 21 Nov 2021 

Accepted: 20 Dec 2021 

 

 

 
Use your device to scan and 

read the article online 

 

 

 

 

Keywords:  

Functionalized Metal 

Nanoparticles, Silver 

Nanoparticles, Gold 

Nanoparticles, 

Antibacterial Activity, 

Antibiotic-Resistant 

Bacteria 

1. Introduction 

Drug resistance to various antibiotics and 
chemotherapeutic agents is the major 
hindrance to treating microbial and viral 

infections as well as cancers [1-5]. Recent 
advances in nanotechnology have made it 
possible to produce nanomaterials of different 
sizes, shapes, and charges that can interact 
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with cancer and bacterial cells, gpipopocud new 
effective antimicrobial agents [6-8]. As it is 
well-known, researchers use various physical 
and chemical methods tpi seutnpscop 
nanoparticles (NPs) [9-11]. In recent years, 
the biological synthesis of green metal-based 
NPs is a new eco-friendly strategy without the 
physical and chemical methods [9, 12]. In this 
way, bacteria, fungi, lichens, and plants may 
be exploited to fabricate NPs without nscud 
toxic and/or expensive reactants [13-17]. 

Primary and secondary metabolites of 
plants can donate both therapeutic and 
biocompatible properties to NPs. For instance, 
Ag-Cu-turmeric nanocomposites and turmeric 
bulk powder exhibited 45% and 2.5% growth 
reduction in the case of E. coli after 24 hours 
of incubation, respectively [18]. NPs have 
unique properties such as a large surface area 
to volume ratio that increase the antibacterial 
activity against various bacteria [19-21]. 
Moreover, various micro- and 
nanoformulations may inhibit and eradicate 
cancer cells [22, 23]. Thus, there are several 
antibacterial and anticancer mechanisms for 
metalloid, metal oxide, and metal NPs [24, 25], 
which are presented here based on the related 
unique properties of NPs.  

2. Anticancer mechanisms  

Multidrug-resistance in cancer cells is a 
major hindrance for their eradication which 
may be the result of several mechanisms 
involving drug efflux pumps (the ATP-binding 
cassette family including P-glycoprotein (P-
gp), multidrug-resistance-associated protein 1 
(MRP-1), and ATP-binding cassette 
transporter G2 (ABCG2)), drug inactivation by 
specific enzymes such as glutathione S-
transferases (GST), changing of drug targets 
(down-regulating the expression of 
topoisomerase II for resistance to 
adriamycin),  inactivation of DNA damage 
repairing system, dysfunction of apoptosis 
pathways, change of extracellular matrix, and 
the over-expression of HIF-1α (vital factor in 
anoxia) for resistance to radiation and 
chemotherapy [26, 27]. For these reasons, the 
co-delivery of anticancer agents with organic 
and inorganic nanomaterials has been 
exploited in ynue studies [25, 28]. 

Formulation of metal or metal oxide-based 
NPs with chemotherapeutic drugs may bypass 
these mechanisms. For instance, camptothecin 
nanocrystals were decorated by silver NPs 
(AgNPs) through self-polymerized dopamine 
to obtain a nanoformulation with the size 
range of 50-150 nm. This study showed the 
uptake ratios between the camptothecin/Ag 
nanocrystals and pure camptothecin 
nanocrystal which were 1.19, 2.03, 1.88, 2.57, 
and 3.54 SKBR3 cells, MDAMB231, Hela, 
MCF7, and A549 cancer cell lines, respectively. 
Probable anticancer mechanisms for these 
nanoformulations were escaping from the 
drug efflux pumps as well as the synergistic 
effect as induction of apoptosis pathways and 
DNA damage from the co-delivered 
camptothecin and AgNPs [29]. Another 
example of synergistic anticancer activity was 
reported for nano-combination of AgNPs, 
some polymers (polyvinylpyrrolidone (PVP), 
polyvinyl alcohol (PVA), and polyethylene 
glycol (PEG)), and doxorubicin (DOX) (Figure 
1). 

More anticancer activity was found in the 
case of DOX-Ag/PVP nanocomposites with 
1ppm against MCF-7 cells. Interestingly, the 
cell line of human fibroblast (1BR hTERT) 
displayed a lower sensitivity as cell viability of 
~80 to these nanocomposites at a 
concentration of 1ppm after 48h exposure 
[30]. Changing tumor-associated macrophages 
(TAMs) from the M2 to M1 phenotype and 
reduction in the expression of HIF-1α and 
hypoxia in TAMs were reported as main 
anticancer mechanisms for Ag and gold NPs 
(AuNPs) [31]. In addition, the anti-
angiogenesis activity of AgNPs can reduce 
new blood vessel formation and extension of 
cancer cells via hindering vascular endothelial 
growth factors [32]. 

The cancer cell cycle arrest and apoptotic 
pathways have been induced for selenium NPs 
(SeNPs) as metalloid NPs upon reactive 
oxygen species (ROS) production. Moreover, 
surface modification and combination of 
SeNPs with anticancer agents enhance 
antitumor activity. On the other hand, various 
investigations ipufcry the anticancer activity 
of secondary metabolites of medicinal plants. 
In this regard, ascorbic acid and curcumin 
were applied as reducing and stabilizing 
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agents to biosynthesize SeNPs followed by 
combination with irinotecan (a medication 
exploited for treating small cell lung cancer 
and colon cancer). By entering through the 
lysosomal pathway, these nano-compounds 
displayed a reduced size of HCT-8 tumors and 
DNA breakage of cancer cells [33].  

 

Fig. 1. nanoformulation of AgNPs, PVP, and 
doxorubicin and their anticancer mechanisms 

(Permission upon 
http://creativecommons.org/licenses/by/4.0

/) [30].  
 

3. Antibacterial mechanisms  

Metal-based NPs can interact with bacterial 
envelopes and penetrate bacterial cell walls 
and membranes, leading to bacteriostatic and 
bactericidal effects [34]. These NPs provide a 
new effective way to overcome common 
mechanisms of antibiotic resistance such as 
permeability regulation, multidrug efflux 
pumps, antibiotic degradation, antibiotic 
modification, etc. It is worth noting that a 
irctcino mechanism to overcoming bacterial 
resistance is the production of antibacterial 
drugs with the ability of penetration and 
inactivation of the biofilm-forming multidrug-
resistant bacterial strains [35]. In addition, the 
application of metal-based NPs may be an 
alternative option to minimize microbial 
resistance and toxicity to human cells. The 
prolonged half-life and hydrophilic properties 
of common antibiotics such as beta-lactams 
and aminoglycosides make blood clearance 
and bacterial penetration difficult [36]. NPs 
are attractive agents to overcome the 
hydrophilic problem because most NPs can 
penetrate bacterial envelopes, which may be 
used to carry antibiotics and increase their 
intracellular activity [37]. For instance, 

spherical kanamycin-AuNPs with 20 nm size 
exhibited the lowest inhibitory concentration 
on the bacterial strains of S. epidermidis, P. 
aeruginosa PAQ1, and P. aeruginosa UNC-D, 
with values of 3.3, 6.3, and 6.3 μg/mL, 
respectively [38]. 

In another study, ampicillin, penicillin, 
neomycin, kanamycin, enoxacin, and 
tetracycline were combined with AgNPs. In all 
nanocomposites, growth inhibition of 
Salmonella typhimurium DT104 was higher at 
concentrations of 0.5, 2, 8, and 16 μM 
compared to AgNO3, AgNPs, and antibiotics 
[39]. In another study, phosphatidylcholine-
AuNPs were functionalized with gentamycin 
antibiotic, which displayed a prominent 
decrease in biofilm mass of S. aureus (~0.2) 
and P. aeruginosa (~0.5) relative to 
phosphatidylcholine-decorated AuNPs (~1.5 
and ~0.8) and gentamicin antibiotic  (~1 and 
~0.6) [40]. Metal-based NPs have specific 
antibacterial toxicity mechanisms that can 
overcome the mechanisms of antibiotic 
resistance by the formation of pits and 
disrupting the membrane or preventing the 
formation of biofilms [41]. However, 
agglomeration of NPs can be a spiprp problem 
because if the NPs clump together, they will 
be prevented from interacting with the 
bacterial cell wall, and their activity will be 
disrupted [42]. 

NPs aggregation can be reduced by 
controlling the zeta potential, which indicates 
the stability of NPs in colloidal suspensions. 
Commonly, highly positive or negative zeta 
potential values means that the colloidal 
suspension is very stable (implying very low 
aggregation) [43]. The zeta potential can be 
good to excellent in a range of ±40 to ±60 mV 
and >61 mV [44]. Even at optimal zeta 
potential, NPs can still aggregate as a result of 
the function of serum components and the 
reticuloendothelial system [45, 46]. 

High stable metal-based NPs in 
physiological medium including silver (Ag), 
gold (Au), zinc oxide (ZnO), copper oxide 
(CuO), and magnesium nanoparticles (MgO) 
NPs can be employed for inactivation of 
bacteria with toxicity to eukaryotic cells. 
However, the addition of common non-toxic 
surface stabilizers such as polymers of 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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polyethylene glycol, chitosan, cellulose and 
proteins and enzymes from bacteria yeast, 
plants, and fungi can increase the 
biocompatibility and stability of these NPs 
[47]. It has been reported that 
functionalization of the silica-coated zinc 
oxide nanoparticles  (ZnONPs) with thiol and 
amine can prevent the aggregation of these 
NPs in a colloidal dispersion [48] or the 
nanosheets prepared with NPs of Bi2WO6 that 
present an antibacterial and antibiotic-
modulation in the association of visible light 
irradiation (LEDs) [49]. 

Some NPs such as gold and iron oxide NPs 
have shown an appropriate level of 
biocompatibility [50]. Metal-based NPs 
release metal ions when they dissolve in the 
environment, which can react with the 
bacterial membrane as a main antibacterial 
mechanism [51]. However, poor ability to 
target cells results in weak antibacterial 
activity of these NPs in physiological 
conditions. To solve this hindrance, NPs can 
be functionalized by biological components to 
bind to selected target cells. Cytotoxic effects 
of NPs may be attributed to various factors 
(Figure 2) [52]. 

In physiological conditions, the interaction 
of NPs with major biological macromolecules 
should be considered to evaluate the side 
effects of NPs. For example, deformation of 
the secondary structure of human hemoglobin 
protein as β-sheet increasing of 8.42% and α-
helix decreasing of 63.8% eprp found under 
the effect of AgNPs [53]. However, in another 
study, stabilization of secondary structure of 
hemoglobin was observed after interaction 
with AuNPs, wherein hydrogen bonds were 
the main primary force in nano-compound of 
hemoglobin-AuNPs [54].  

The production of reactive oxygen species 
(ROS) is a major determinant of in vitro and in 
vivo cytotoxicity of metal-based NPs [55]. It 
should be noted that ROS are physiologically 
essential because lower levels of ROS control 
several cellular processes, but when they 
increase beyond a certain range, they could 
cause severe oxidative stress, leading to cell 
death through lipid peroxidation and 
alteration of DNA and protein structures [56]. 
The toxic effects produced by ROS are not 

limited to specific cells or organs but also 
affect various systems and functions of the 
body, including the central nervous system, 
respiratory system, and cardiovascular 
system, by related mechanisms such as 
regulation of microRNA expression, which 
may also be suitable for hindrance of cancer 
cells (Figure 3) [57-59]. CuO and Ag-CuO NPs 
in spherical shape were synthesized by Malus 
domestica leaf extract with a diameter of 18 
and 20 nm, respectively. Inhibition zones of 
CuO and Ag-CuO NPs at 100 μg/ml 
concentration on S. aureus were 19 and 15 
mm, respectively. Moreover, cleavage of pBR 
322 DNA was observed in high levels for 
CuONPs relative to Ag-CuO NPs [60].  

The shape and size of NPs can determine 
the intensity of their antibacterial activity. For 
instance, rod-shaped AgNPs-doped hydrogels 
showed lower antibacterial activity than 
spherical and triangular AgNPs-doped 
hydrogels [61]. This difference is attributed to 
the facets number of the NPs and the 
interaction with the bacterial components. As 
a comparative study, there was more 
inhibition zone for cubical-shaped Cerium 
Oxide NPs (CeO2NPs) than spherical-shaped 
CeO2NPs against Escherichia coli, 
Pseudomonas aeruginosa, Bacillus subtilis, and 
Staphylococcus aureus [62]. 

The concentration of NPs can also 
determine the capacity of antibacterial 
activity. Low, medium, and high 
concentrations of rod-shaped and 
sphericalNPs displayed weak, strong, and 
weak antibacterial effects on Klebsiella 
pneumoniae, respectively [63]. In addition, 
NPs have surface charge-dependent toxicity. 
Accordingly, the more positive charge of the 
NPs surface can lead to higher antiplanktonic 
and antibiofilm activities. The surface charge 
of NPs improves their electrostatic interaction 
with the negative charge of the bacterial 
envelope. In this way, during NPs preparation, 
a coating agent is added to increase the 
stability, positive charge, and facilitate the 
dispersion of the NPs in the colloidal medium. 
Moreover, the surface properties of NPs can 
also impact bacterial activity. The different 
molecular mechanisms were found for E. coli 
on nano-rough and flat gold substrate, as the 
expression of type-1 fimbriae was active on a 
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flat surface. At the same time, it was inactive 
on the rough surface [34]. 

 

 

 

 

Fig. 2. A) Cytotoxicity mechanisms of metal-based NP (Permitted by the terms of the Creative 
Commons Attribution License (CC BY)) [52]; B) antibacterial mechanisms of metal or metal 

oxide NPs in various shapes [64]. 
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Fig. 3. Regulation of microRNA biogenesis via ROS production in eukaryotic cells. The Creative 
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)[59]. 

 
It should be considered that long-term 

application of AgNPs can result in a low 
sensitivity of P. aeruginosa biofilm by the 
resistance mechanism to penetration of silver 
ions into biofilm structure [65]. Metal NPs can 
block the quorum sensing of bacteria. For 
example, based on molecular docking 
investigation, AgNPs strongly locked the 
active sites of RhlR, RhlI, LasR, and LasI [66]. 
Inhibition of the bacterial growth led to 
bacterial destruction by ROS production, 
without cytotoxicity for the surrounding 
tissues, has been reported to SeNPs. For 
example, P. aeruginosa and E. coli showed 
more sensitivity under the stress of SeNPs 
(biosynthesized by Providencia sp. DCX) with 
a spherical shape, a mean size of 120 nm, and 
500 mg/L concentration relative to S. aureus. 
For this study, the oxidative damages 
resulting from ROS have been indicated for 
inactivation and eradication of both Gram-
negative and Gram-positive bacteria [67].  

4. Conclusion 

After reviewing the literature it was found 
that metal, metal oxide and metalloid NPs may 
be regarded as desirable alternatives for 
fighting against bacterial pathogens and 
cancer tumors, particularly multidrug-
resistant bacteria and cancer cells. 
Reprogramming pro-inflammatory cytokine 

cascades, redox pathways, and 
immunosuppressive actions, have been 
indicated as the main anticancer mechanisms 
of Ag and Au NPs. Also, metal NPs, specifically 
AgNPs, can reduce new blood vessel 
formation and extension of cancer tissue via 
inhibiting the vascular endothelial growth 
factor. In the case of functionalized noble 
metal NPs, escaping from the drug efflux 
pumps, as well as, the synergistic effect as 
induction of apoptosis pathways and DNA 
damage were indicated for co-delivery of 
AgNPs with anticancer drugs such as 
doxorubicin and camptothecin. 

For antibacterial ability, using a suitable 
dose during an effective incubation time 
should be precisely controlled to reduce 
cytotoxicity effects on eukaryotic cells and 
inhibit the emergence of new resistant strains. 
In addition, the inactivation and eradication of 
Gram-negative and Gram-positive bacteria 
may be mainly caused by the oxidative 
damages resulting from ROS in the bacterial 
medium. Overall, metalloid, metal and metal 
oxide NPs can be functionalized by other 
antibacterial agents and biocompatible 
stabilizers to increase their efficiency in 
physiological conditions.  

 

http://creativecommons.org/licenses/by/4.0/
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Abbreviation 

AgNPs: silver NPs 

DOX: doxorubicin 

GST: glutathione S-transferases 

PEG: polyethylene glycol 

PVA: polyvinyl alcohol 

PVP: polyvinylpyrrolidone 

ROS: reactive oxygen species 

TAMs: tumor-associated macrophages 

ZnONPs: zinc oxide nanoparticles 
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