Original Article

Evaluation of antibiotic resistance and prevalence of multi-antibiotic resistant genes among *Acinetobacter baumannii* strains isolated from patients admitted to al-Yarmouk hospital

Zahraa Khudhair Abbas Al- Khafaji 1, Qassim hassan Aubais aljelehawy2* 💿

Article info Received: 15 Aug 2021 Revised: 27 Oct 2021 Accepted: 23 Dec 2021

Use your device to scan and

Keywords: Nosocomial Infections, Antibiotic-Resistant Bacteria, Carbapenems; Antibacterial Activity, Beta-Lactamase Genes, The Blaampc Gene

1. Introduction

<u>ABSTRACT</u>

Emerging antibiotic resistance in microorganisms particularly multidrugresistant bacterial strains are increasing because of misusing antibiotics as well as the evolution of antibiotic resistance mechanisms in new strains. In this regard, Acinetobacter baumannii is one of the six most common multidrugresistant microorganisms related to nosocomial diseases. Recently, carbapenems, as common antibiotics to treat infections caused by Acinetobacter have not shown an acceptable efficiency because of the resistance emergence to carbapenems in many strains of this bacterium. In this study, resistant strains of A. baumannii were isolated and identified as an appropriate preventive strategy to reduce bacterial infections in al-yarmouk hospital of Iraq. Disc diffusion test and PCR method were used to isolate of resistant strains and identify beta-lactamase genes of blaAmpC, blaTEM, blaVIM, and blaSHV. This study showed that these genes were contributed to the antibiotic resistance with about 18.4% and \geq 53.5% strains expressing all 4 genes and \geq 3 genes, respectively. The blaAmpC gene is more prevalent than other genes, and this is probably due to the prevalence or rapid transfer of this beta-lactamase. However, more studies should be performed in a comparative way to isolate and identify other antibiotic-resistant bacterial strains associated with other hospitals.

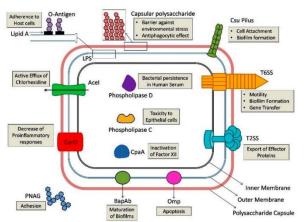
Microbial infections, heart diseases, and cancers are the main health-threatening diseases worldwide 2]. Antibiotic [1, resistance is a threat in many hospitals, and mortality and death due to infections in patients are increasing dramatically [3]. Antimicrobial resistance often occurs as a result of the treatment of infectious diseases by misuse of antibiotics and is a global problem that affects the environment, human and animal health, as well as agriculture and the economy [4, 5]. Bacterial resistance to antibiotics can be either innate or acquired [6]. Meanwhile, antibiotic resistance has become a global problem among the clinical Klebsiella, strains of Acinetobacter, Pseudomonas aeruginosa, Proteus, Escherichia coli, and Enterobacter species, and becomes a

this concern when resistance can be transmitted through motile genetic elements (MGE) [7]. Among these strains, Acinetobacter baumannii (Figure 1) plays an important role due to its ability to acquire resistance genes and cause a wide range of nosocomial infections, including bacteremia, secondary meningitis and urinary tract infections [8]. *Acinetobacter* is gram-negative coccobacilli, catalase-positive, oxidasenegative, non-fermentative and aerobic that is widely distributed in the hospital with difficulty to treat pathogens particularly in Intensive Care Units (ICUs) [9].

A. baumannii has a great potential for the rapid development of antibiotic resistance, which today has led to multidrug-resistance. This bacterium is one of the six most

¹Medical Laboratory Technique Department, the Islamic University, Diwaniya, Iraq

²Research and Studies Department, the Islamic University, Najaf, Iraq


^{*}Corresponding Author: Qassim Hassan Aubais Aljelehawy (qasemhussan@iunajaf.edu.iq)

important multidrug-resistant (MDR) microorganisms in hospitals around the world. The prevalence of Pandrug –Resistant (PDR) *A. baumannii* has been established in Asian and Middle Eastern hospitals, and various types of carbapenemases have been reported [10]. Currently, several *A. baumannii* strains have become resistant to all available antimicrobial agents with the ability to transmit antibiotic resistance genes through chromosomes, plasmids, and transposons. Dependent on the type of bacteria, resistance mechanisms also take place in different ways.

The most important mechanisms of antibiotic resistance in A. baumannii isolates such as target site change, overexpression of genes associated with efflux pumps. decreased permeability, penicillin-binding proteins (PBP), and enzymatic inactivation of drugs such as beta-lactamases. Inactivation of beta-lactam antibiotics by beta-lactamase enzymes is one of the most important resistance mechanisms in A. baumannii [11]. enzymes inactivate beta-lactam These antibiotics by hydrolyzing the beta-lactam ring, making a complicated antimicrobial therapy. Beta-lactamase enzymes are grouped into four molecular classes A-D. The updated classification of these enzymes involves metallo-β-lactamases as group 3; classes A and D (group 2) broad-spectrum, extendedspectrum β-lactamases and serine carbapenemases; class С (group 1) cephalosporinases [12]. Treatment of Acinetobacter infections is often difficult because of their resistance to multiple antibiotics [13-15].

Carbapenems are currently used as the common drugs for the treatment of MDR *Acinetobacter* infections. However, by the emergence and increase of strains with resistance to carbapenems, treatment of *Acinetobacter* infections is considered as an important health problem in many countries [16]. The issue of isolating the resistant *A. baumannii* strains and identifying their resistance mechanisms seems to be very important, and accurate and reliable results in this field are important to apply appropriate treatment strategies and prevent the spread of infections.

Due to the lack of knowledge about the prevalence of *Acinetobacter* infections in Baghdad hospitals in Iraq and determination of the profile of the antibiotic resistance and genotype of antibiotic resistance in strains isolated from these hospitals, this study was performed.

Fig. 1. A schematic image of virulence factors of *A. baumannii*. Copyright under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by /4.0/)[8].

2. Materials and methods

2.1. Collection and identification of bacterial strains

In a cross-sectional descriptive study, from January to the end of June 2019, 200 clinical specimens of patients admitted to the ICU of Baghdad hospitals were collected. Samples were collected from blood, throat, urine, catheter, wound and lung. After collection, the samples were transferred to the laboratory and cultured on Blood agar and MacConkey agar (Merck Germany) and then incubated at 37 ° C for 24 hours. Standard biochemical tests and the VITEK®2 system were used to identify the bacterial strains [<u>17</u>].

2.2. Antibiotic susceptibility test

Antimicrobial susceptibility test was determined according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI) [18]. The antibiotic discs used in this study were included cefotaxime (30 μ g), levofloxacin (5 μ g), ceftazidime (10 μ g), amoxicillin / clavulanic acid (10-20 μ g) and

ceftriaxone (30g), imipenem (10 µg).), meropenem (10 µg), ciprofloxacin (5 µg), gentamicin (10 µg), tobramycin (10 µg), cefixime (5 μ g) and cotrimoxazole (1.25 / 23.75 µg). To evaluate the antibiotic susceptibility test, a certain volume of the bacterial suspension of strains with McFarland standard $(1.5 \times 10^8 \text{ CFU} / \text{ml})$ was inoculated and spread on Müller-Hinton agar medium (Merck Germany). Then, each of the disks was placed on the plate at specific intervals. Finally, after incubation for 24 hours, the inhibition zone diameter was measured and the results were interpreted as sensitive, intermediate and resistant forms [<u>19</u>].

2.3. The presence of blaAmpC, blaTEM, blaVIM, and blaSHV genes

The conventional boiling method was used for fast and easy extraction of bacterial DNA. Briefly, several pure colonies were removed from the 24-hour culture of bacterial strains and inoculated into 100 μ l of sterile distilled water. The microtubes were then kept at 100°C for 15 minutes. After a time, the microtubes were placed in the freezer for 5 minutes for temperature shock and cell wall lysis. The microbial suspension was then centrifuged at 12,000 rpm for 10 minutes, and the resulting supernatant was added to the new microtubes as a DNA template [20].

Polymerase chain reaction (PCR) method was used to evaluate the presence of blaAmpC, blaTEM, blaVIM and blaSHV betalactamase genes. Table 1 shows the sequence of the primers, the annealing temperature, and the target genes. The materials required for the PCR method were as follows: 9 µl of Master Mix, 1 µl of each of the forward and reverse primers (10 pmol/uL), 2 µl of template DNA, and 12 µl of deionized water. Except for annealing temperature, the reaction temperature of the PCR for all betalactamase genes was the same. The PCR cycling conditions were as follows: 94 ° C for 5 min, followed by 35 cycles at 94 ° C for 45 s. and a final 5-min extension step at 72 $^{\circ}$ C. Finally, the PCR products were analyzed by electrophoresis in 1 % agarose gel. A negative

2.4. Statistical analysis

The results were analyzed using the 26th version of the software (IBM Co., SPSS Statistics) SPSS and Chi-square and Fisher's tests. The significance limit was set at p <0.05.

3. Results

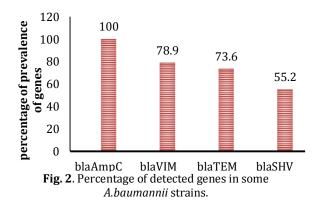
The results of biochemical tests and VITEK®2 system showed that out of 200 samples collected from patients admitted to ICU, Pseudomonas (24.3%), Staphylococcus (21.2%), A. baumannii (19%), E. coli (18.1%) Klebsiella pneumoniae (13.1%)and *Enterobacter* (4.3%) had the highest number of samples, respectively. Out of 38 strains of A. baumannii, 21 samples (55.2%) were related to male patients with a mean age of 38 years and 17 samples (44.8%) were related to female patients with a mean age of 36 years. Among the *A. baumannii* strains, 5 (13.1%) samples of blood, 7 (18.4%) from throat, 7 (18.7%) from urine, and 3 (7.8%) from lung samples, 5 (13.1%) from catheter and 11 (28.9%) from wound samples were obtained (p < 0.05) (Table 2). The results of antibiotic susceptibility testing are also shown in Table 3. As can be seen, the highest antibiotic resistance among A. baumannii isolates was related to amoxicillin / clavulanic acid (92.1%), imipenem (86.8%) and ceftriaxone (86.8), respectively.

The highest antibiotic susceptibility was related to tobramycin (31.5%), co-tri-moxazol (26.3%), and ciprofloxacin (26.3%). In this study, the tobramycin antibiotic showed better activity than other antibiotics against baumannii. However, MDR А. other antimicrobial agents such as amoxicillin / clavulanic acid, imipenem and ceftriaxone showed high rates of the resistance in the present study. The results of antibiogram revealed that the level of resistance to carbapenems and cephalosporins is higher compared to other classes of antibiotics.

	Table 1. f	roduct length and primer's sequence us	seu ioi P	LK reaction.	
Gene	Primer	Sequence	TM (oC)	Size (bp)	References
blaAmpC	forward reverse	5′- ACTTACTTCAACTCGCGACG -3′ 5′- TAAACACCACATATGTTCCG-3′	50 663		[<u>21]</u>
blaVIM	forward reverse	5′- GATGGTGTTTGGTCGCATA-3′ 5′- CGAATGCGCAGCACCAG-3′	51	390	[<u>22]</u>
blaTEM	forward reverse	5′- AGGAAGAGTATGATTCAACA -3′ 5′- CTCGTCGTTTGGTATGGC -3′	52	535	[<u>23]</u>
blaSHV	forward reverse	5′-AGCCGCTTGAGCAAATTAAAC-3′ 5′-ATCCCGCAGATAAATCACCAC-3′	53	713	[<u>24]</u>

Table 1. Product length and primers sequence used for PCR reaction.

Table 2. Collected samples from blood, throat, urine, catheter, wound, and lung with related frequency of their beta-


lactamase genes.							
Gene	frequency	catheter n = 5	wound n = 11	blood n = 5	urine n = 7	throat n = 7	lung n = 3
AmpC	38	5	11	5	7	7	3
VIM	30	4	9	2	5	7	3
TEM	28	3	7	3	7	6	2
SHV	21	4	8	2	1	5	1

Antibiotic classes	Antibiotics	Resistant	Intermediate	Sensitive
Carbapenems	Imipenem (10µg)	33 (86.8 %)	0 (0 %)	5 (13.1 %)
Carbapenenns	Meropenem (10µg)	31 (81.5 %)	0 (0 %)	7 (18.4.2 %)
Comboloomoring	Ceftazidime (30 µg)	31 (81.5 %)	0 (0 %)	0 (0 %)
Cephalosporins	Ceftriaxone (30 µg)	33 (86.8 %)	1 (2.6 %)	4 (10.5 %)
	Cefixime (5 µg)	26 (68.4 %)	3 (7.8 %)	9 (23.6 %)
Owinglands	Ciprofloxacin (5 µg)	27 (71 %)	1 (2.6 %)	10 (26.3 %)
Quinolones	Levofloxacin (10µg)	29 (76.3 %)	5 (13.1 %)	4 (10.2 %)
Aminoglygogidag	Gentamicin (10 µg)	31 (81.5 %)	0 (0 %)	7 (18.4 %)
Aminoglycosides	Tobramycin (10 μg)	23 (60.5 %)	3 (7.8 %)	12 (31.5 %)
Penicillins	Amoxicillin / Clavulanic acid (20/10 μg)	35 (92.1 %)	1 (2.6 %)	2 (5.2 %)
sulfonamides	Co-tri-moxazol (1.25/23.75 μg)	26 (68.4 %)	2 (5.2 %)	10 (26.3 %)

Table 3. Antibiotic resistance profile for A. baumannii strains.

PCR results for blaAmpC , blaVIM, blaSHV, and blaTEM genes in 38 strains of A. baumannii showed that the blaAmpC gene was more common than all the other genes and was detected in 100% (38) of the isolates. The frequencies of blaVIM, blaTEM and blaSHV genes were determined in 78.9% (30), 73.6% (28), and 55.2% (21) of A. baumannii strains, respectively (Figure 2). The presence of blaAmpC , blaVIM, blaSHV, and blaTEM genes indicates the possible role of these genes in the antibiotic resistance of A. baumannii isolates. The prevalence of genes is shown in Fig. 2. According to PCR results (Figure 2a-d), it was found that the studied beta-lactamase genes were involved in antibiotic resistance. Molecular analysis also showed that about 18.4% of the isolates expressed all 4 genes. More than 53.5% of isolates had at least 3 genes. The relationship between the source of isolates and the

presence of genes was not statistically significant (P < 0.05).

Fig. 2. Detection of *bla*_{VIM} (a), *blaSHV* (b), *blaAmpC* (c), and *blaTEM* (d) genes in some *A. baumannii* strains.

4. Discussion

Α. baumannii is an emerging and opportunistic hospital pathogen responsible for nosocomial infections. The development of multidrug resistance in A. baumannii is a growing concern. A. baumannii plays an important role in nosocomial infections, especially in ICU patients [8]. This study was performed to determine the antibiotic resistance profile and evaluate the presence of beta-lactamase genes among Acinetobacter spp. strains isolated from clinical specimens. All isolates in this study were resistant to many antibiotics. Our results showed that the resistance rate to cephalosporins and carbapenems is high. The detection of MDR strains of A. baumannii has increased dramatically in Iraq in recent years. Numerous studies have been conducted in this regard in Iraq.

In the study of Shali *et al.* [25] the resistance to imipenem was 57.1%, which was lower than the findings of the present study, however, the resistance to gentamicin, ceftazidime and amoxicillin / clavulanic acid was similar to our results [25]. In another report, the resistance of *A. baumannii* strains to cefotaxime (94%), ceftriaxone (83%), amoxicillin + clavulanic acid (85%), ceftazidime (80 %) and ciprofloxacin (73%) were consistent with our observations [26].

In the report of Aziz *et al.* [27] the resistance to the aminoglycoside antibiotics of gentamicin and tobramycin among *A. baumannii* strains was similar to the reported finding [27].

In other countries, many studies have been performed to evaluate antibiotic resistance among A. baumannii strains. A study by Lin Yin et al. [23] in China and a study by Lowings et al. [28] in South Africa reported 100% resistance to cefotaxime. Also, in the study of Al-Agamy and coworkers in Egypt [29] the resistance of the isolates to the two antibiotics cefotaxime and ceftazidime was 100% [29]. In the report of F. Mushi et al., the resistance to ceftazidime was estimated to be 90% [30]. All the above reports are completely consistent with our results of the present study and indicate that the resistance of Acinetobacte baumannii strains to cephalosporins is very high. In the study of Chang *et al.* in China [21] and also in the study of Al-Agamy et al. in Egypt [29], the prevalence of AmpC betalactamase was higher than other genes and was detected in 97.1% and 100% of Carbapenem-resistant A. baumannii strains, respectively. Also, according to studies conducted by Hujer *et al.* [31] and Lin Yin *et* al. [23], this gene was the most common among the studied genes and was reported in 99% and 100% of MDR isolates, respectively. All the results of the above studies are consistent with our results. The incidence of the blaVIM gene in the present study was also high and was detected in 78.9% of A. baumannii isolates. The VIM beta-lactamase gene belongs to the group of beta-lactamases that make carbapenem-resistant. Although this gene is less common than previous studies. it is the most common metallobetalactamase gene. Aziz *et al.* [27] reported the prevalence of this gene among *A*. baumannii strains isolated from clinical samples of Najaf and Baghdad hospitals in Iraq, which did not correspond to our findings [27]. The frequency of this gene was different in other countries as well. In the studies of Fallah et al. the prevalence of the mentioned gene was reported 44 17 % and 32.6%, respectively [32].

In some studies, were related that the blaVIM gene was not detected in any of the

resistant isolates of *A. baumannii* [21, 23]. In Satir *et al.* [31] study, the prevalence of this gene in carbapenem-resistant isolates was estimated to be 67.56%, which in all of the above cases, the spread of this gene in A. baumannii strains is less than the present study. Probably the reason for the rapid spread of this gene in the isolates of A. baumannii is the placement of this gene on the plasmid and as a result of transfer through the plasmid to other susceptible bacteria and their conversion into a resistant form [31]. PCR results in the present study showed that 55.2% of A. baumannii strains have the blaSHV gene. SHV beta-lactamase belongs to class A beta-lactamases called broadspectrum (ESBL). This gene is located on a plasmid or chromosome and is responsible for resistance to broad-spectrum cephalosporins. The blaSHV gene is commonly found in Enterobacteriaceae, but there are reports from around the world showing an increase in A. baumannii bacteria. Al-Hasnawy et al. [26] have shown that 15.3% and 7.6% of A. baumannii isolates were able to carry bla-SHV and bla-TEM-2 genes, respectively [26]. Hujer *et al.* [31], Lin Yin *et al.* [23] reported that the prevalence of this gene in A. baumannii isolates was 1% and 0%, respectively. The prevalence of SHV gene in Agamy et al.'s study among carbapenem-insensitive A. baumannii strains was determined to be 0% [29]. According to these reports, the prevalence of this gene in all of the above studies is much lower than the present study. According to the reports, it seems that the prevalence of SHV gene in A. baumannii isolates has increased over time. TEM beta-lactamase is another antibiotic-resistant gene that is located on the plasmid and is resistant to broad-spectrum cephalosporins. PCR results in the present study indicate the presence of this gene in 73.6% of the isolates. In the report of Alkadmy et al. [33], the prevalence of blaTEM gene among A. baumannii strains isolated from clinical samples of Baghdad hospitals was estimated to be about 20% [33].

5. Conclusion

Increasing resistance to carbapenems and cephalosporins antibiotics is a major challenge in the treatment of *A. baumannii* infections. In this investigation, PCR results demonstrated that all A. baumannii isolates had beta-lactamase genes, also the highest prevalence of beta-lactamase genes was related to blaAmpC, blaVIM, blaTEM and blaSHV genes, respectively. AmpC belongs to group C beta-lactamases and is also called cephalosporinase. The blaAmpC genes are located on the plasmid or chromosome of A. baumannii strains. In addition, it seems that the blaAmpC gene is more prevalent than other genes, and this is probably due to the prevalence or rapid transfer of this betalactamase gene. Finally, future studies should be performed in a comparative way to isolate and identify other resistant strains relate to other hospitals.

Abbreviation

PCR: polymerase chain reaction MDR: multidrug-resistant PDR: pandrug-resistant PBP: penicillin-binding proteins MGE: motile genetic elements ICUs: Intensive Care Units CLSI: Clinical and Laboratory Standards Institute

Acknowledgment

We appreciate al-yarmouk hospital in Baghdad of Iraq for providing *A. baumannii* strains.

Conflict of interest

The authors declare no conflict of interest.

Consent for publications

The authors read and proved the final manuscript for publication.

Availability of data and material

All data generated during this study are included in this published article

Authors' Contribution

Study concept and design: Z. K. A. A- K and Q. H. A. A. Data acquisition: Z. K. A. A- K and Q. H. A. A. Data analysis and interpretation: Z. K. A. A- K and Q. H. A. A.

Funding

No financial support was received for this study.

Ethics approval and consent to participate

The study does not need ethical approval.

References

- 1. Ercisli MF, Lechun G, Azeez SH, Hamasalih RM, Song S, Aziziaram Z (2021) Relevance of genetic polymorphisms of the human cytochrome P450 3A4 in rivaroxabantreated patients. Cell Mol Biomed Rep 1 (1): 33-41. doi: <u>Https://doi.org/10.55705/cmbr.2021.138</u> <u>880.1003</u>
- 2. Tourang M, Fang L, Zhong Y, Suthar RC (2021) Association between Human Endogenous Retrovirus K gene expression and breast cancer. Cell Mol Biomed Rep 1 (1): 7-13. doi: <u>Https://doi.org/10.55705/cmbr.2021.138</u> <u>810.1008</u>
- 3. Aljelehawy Q, Karimi N, Alavi M (2021) Comparison of antibacterial and cytotoxic activities of phytosynthesized ZnONPs by leaves extract of *Daphne mucronata* at different salt sources. Materials Technology 36 (12): 747-759. doi: https://doi.org/10.1080/10667857.2020. 1794280
- 4. Li B, Webster TJ (2018) Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. Journal of Orthopaedic Research® 36 (1): 22-32. doi: https://doi.org/10.1002/jor.23656
- 5. Alavi M, Rai M (2021) Chapter 11 -Antibacterial and wound healing activities of micro/nanocarriers based on carboxymethyl and quaternized chitosan derivatives. In: Rai M, dos Santos CA (eds) Biopolymer-Based Nano Films. Elsevier, pp 191-201.

doi:<u>https://doi.org/10.1016/B978-0-12-</u> 823381-8.00009-0

- Alavi M, Dehestaniathar S, Mohammadi S, Maleki A, Karimi N (2021) Antibacterial activities of phytofabricated ZnO and CuO NPs by Mentha pulegium leaf/flower mixture extract against antibiotic resistant bacteria. Advanced Pharmaceutical Bulletin 11 (3): 497. doi: https://doi.org/10.34172%2Fapb.2021.05 Z
- 7. Georgios M, Egki T, Effrosyni S (2014) Phenotypic and molecular methods for the

detection of antibiotic resistance mechanisms in Gram negative nosocomial pathogens. Trends in infectious diseases 4: 139-162. doi:

http://doi.org/10.5772/57582

- 8. Ayoub Moubareck C, Hammoudi Halat D Insights (2020)into Acinetobacter baumannii: a review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics 9 (3): 119. doi: https://doi.org/10.3390/antibiotics90301 19
- 9. Bergogne-Bérézin E, Joly-Guillou M-L, Towner K (2020) Introduction—History and Importance of Acinetobacter spp., Role in Infections, Treatment and Cost Implications. In: Acinetobacter. CRC Press, pp 1-12
- 10. Chan P-C, Huang L-M, Lin H-C, Chang L-Y, Chen M-L, Lu C-Y, Lee P-I, Chen J-M, Lee C-Y, Pan H-J (2007) Control of an outbreak of pandrug-resistant Acinetobacter baumannii colonization and infection in a neonatal intensive care unit. Infection Control & Hospital Epidemiology 28 (4): 423-429. doi:

https://doi.org/10.1086/513120

- 11. Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A (2021) Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens 10 (3): 373. doi: <u>https://doi.org/10.3390/pathogens10030</u> <u>373</u>
- 12. Bush K, Jacoby GA (2010) Updated functional classification of β-lactamases. Antimicrobial agents and chemotherapy 54 (3): 969-976. doi: https://doi.org/10.1128/aac.01009-09

13. Lee C-R, Lee JH, Park M, Park KS, Bae JK, Kim YB, Cha C-J, Jeong BC, Lee SH (2017) Biology of Acinetobacter baumannii: pathogenesis. antibiotic resistance mechanisms, and prospective treatment options. Frontiers in cellular and infection microbiology 7: 55. doi: https://doi.org/10.3389/fcimb.2017.0005 5

14. Paterson DL, Bonomo RA (2005) Extended-spectrum β -lactamases: a clinical update. Clinical microbiology reviews 18 (4): 657-686. doi: <u>https://doi.org/10.1128/cmr.18.4.657-686.2005</u>

- 15. Alavi M, Karimi N (2019) Biosynthesis of Ag and Cu NPs by secondary metabolites of usnic acid and thymol with biological macromolecules aggregation and antibacterial activities against multi drug resistant (MDR) bacteria. International Journal of Biological Macromolecules 128: 893-901. doi: https://doi.org/10.1016/j.ijbiomac.2019.0 1.177
- 16. Piperaki ET, Tzouvelekis LS, Miriagou V, Daikos GL (2019) Carbapenem-resistant *Acinetobacter baumannii*: in pursuit of an effective treatment. Clinical Microbiology and Infection 25 (8): 951-957. doi: <u>https://doi.org/10.1016/j.cmi.2019.03.01</u> 4
- 17. Leverstein-van Hall MA, Fluit AC, Paauw A, Box AT, Brisse S, Verhoef J (2002) Evaluation of the Etest ESBL and the BD Phoenix, VITEK 1, and VITEK 2 automated instruments for detection of extendedspectrum beta-lactamases in multiresistant *Escherichia coli* and *Klebsiella* spp. Journal of clinical microbiology 40 (10): 3703-3711. doi: https://doi.org/10.1128/jcm.40.10.3703-

3711.2002

18. Afhami S, Borumand MA, Bazzaz NE, Saffar H, Hadadi A, Nezhad MJ, Tirabadi NM (2020) Antimicrobial resistance pattern of Acinetobacter: multicenter studv. а European Committee comparing on Antimicrobial **Susceptibility** Testing (EUCAST) and the Clinical and Laboratory Standards Institute (CLSI); evaluation of susceptibility testing methods for polymyxin. Immunopathologia Persa 7 (1): e04-e04. doi:

https://doi.org/10.34172/ipp.2021.04

- Andrzejczuk S, Kosikowska U, Chwiejczak E, Stępień-Pyśniak D, Malm A (2019) Prevalence of resistance to β-lactam antibiotics and bla genes among commensal *Haemophilus parainfluenzae* isolates from respiratory microbiota in Poland. Microorganisms 7 (10): 427. doi: <u>https://doi.org/10.3390/microorganisms7</u> 100427
- 20. Ahmed OB, Dablool AS (2017) Quality improvement of the DNA extracted by boiling method in gram negative bacteria. International Journal of Bioassays 6 (4): 5347-5349. doi:

http://dx.doi.org/10.21746/ijbio.2017.04. 004

- 21. Chang Y, Luan G, Xu Y, Wang Y, Shen M, Zhang C, Zheng W, Huang J, Yang J, Jia X (2015) Characterization of carbapenemresistant *Acinetobacter baumannii* isolates in a Chinese teaching hospital. Front microbiol 6: 910. doi: https://doi.org/10.3389/fmicb.2015.0091 <u>0</u>
- 22. Lowings M, Ehlers MM, Dreyer AW, Kock MM (2015) High prevalence of oxacillinases in clinical multidrug-resistant Acinetobacter baumannii isolates from the Tshwane region, South Africa-an update. BMC Infect Dis 15 (1): 1-10. doi: <u>http://doi.org/10.1186/s12879-015-1246-8</u>
- 23. Yin X-L, Hou T-W, Xu S-B, Ma C-Q, Yao Z-Y, Li W, Wei L (2008) Detection of drug resistance–associated genes of multidrugresistant Acinetobacter baumannii. Microbial Drug Resistance 14 (2): 145-150. doi:

https://doi.org/10.1089/mdr.2008.0799

- 24. Mohammed H, Elsadek Fakhr A, Al Johery SaE, Abdel Ghani Hassanein W (2016) Spread of TEM, VIM, SHV, and CTX-M βlactamases in imipenem-resistant Gramnegative bacilli isolated from Egyptian hospitals. Int J Microbiol 2016. doi: http://doi.org/10.1155/2016/8382605
- 25. Shali AA (2012) Identification of Multidrug-Resistant Genes in" Acinetobacter baumannii" in Sulaimani City-Kurdistan Regional Government of Iraq. Asian Journal of Medical Sciences 4 (5): 179-183. doi:
- 26. Al-Hasnawy HH, Saleh RH, Hadi BH (2018) Existence of aESBL genes in Escherichia coli and Acinetobacter baumannii isolated from different clinical specimens. Journal of Pharmaceutical Sciences and Research 10 (5): 1112-1117. doi:
- 27. Aziz RAR, Al-Jubori SS (2017) Molecular analysis of genetic elements responsible for XDR in highly successful pathogen Acinetobacter baumannii isolated from clinical samples of Iraqi patients. J Glob Pharma Technol 9 (4): 26-39. doi:
- 28. Lowings M, Ehlers MM, Dreyer AW, Kock MM (2015) High prevalence of oxacillinases in clinical multidrug-resistant Acinetobacter baumannii isolates from the

Tshwane region, South Africa–an update. BMC infectious diseases 15 (1): 1-10. doi: http://doi.org/10.1186/s12879-015-1246-8

- 29. Al-Agamy MH, Khalaf NG, Tawfick MM, Shibl AM, Kholy AE (2014) Molecular characterization of carbapenem-insensitive *Acinetobacter baumannii* in Egypt. International Journal of Infectious Diseases 22: 49-54. doi: https://doi.org/10.1016/j.ijid.2013.12.004
- 30. Mushi MF, Mshana SE, Imirzalioglu C, Bwanga F (2014) Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in BioMed Mwanza, Tanzania. research international 2014: Article ID 303104. doi: Mushi MF, Mshana SE, Imirzalioglu C, Bwanga F (2014) Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania, Biomed Res Int 2014. doi:https://doi.org/10.1155/2014/30310 <u>4</u>
- 31. Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey CJ,

Ecker DJ, Massire C, Eshoo MW, Sampath R (2006) Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrobial agents and chemotherapy 50 (12): 4114-4123. doi: https://doi.org/10.1128/aac.00778-06

- 32. Fallah F, Noori M, Hashemi A, Goudarzi H, Karimi A, Erfanimanesh S, Alimehr S (2014) Prevalence of bla *NDM*, bla *PER*, *blaVEB*, *blaIMP*, and *blaVIM* Genes among *Acinetobacter baumannii* isolated from two hospitals of Tehran, Iran. Scientifica 2014: Article ID 245162. doi: https://doi.org/10.1155/2014/245162
- 33. Al-Kadmy IMS, Ali ANM, Salman IMA, Khazaal SS (2018)Molecular characterization of Acinetobacter baumannii isolated from Iraqi hospital environment. New Microbes and New Infections 21: 51-57. doi: https://doi.org/10.1016/j.nmni.2017.10.0 10

Copyright © 2021 by the author(s). This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

How to Cite This Article:

Abbas-Al-Khafaji ZK, Aubais-aljelehawy Qh (2021) Evaluation of antibiotic resistance and prevalence of multi-antibiotic resistant genes among Acinetobacter baumannii strains isolated from patients admitted to al-yarmouk hospital. Cellular, Molecular and Biomedical Reports 1(2):60-68. doi:10.55705/cmbr.2021.142761.1015

Download citation:

RIS; EndNote; Mendeley; BibTeX; APA; MLA; HARVARD; VANCOUVER