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A B S T R A C T 

Finding efficient therapeutic strategies to fight antibiotic-resistant 

bacteria is a complicated affair specifically in the therapy of chronic 

bacterial infections related to hospital-acquired infections. Recently, 

three major antibacterial systems based on antisense RNA, CRISPR-Cas9, 

and metal/metal oxide nanoparticles particularly silver (Ag) 

nanoparticles have shown more effective antibacterial activity compared 

to conventional antibiotics. ROS generation, attachment to the cell 

membrane, disruption of bacterial envelop, inactivation of electron 

transport chain, decreasing the local pH, modulation of cell signaling, and 

denaturation of biological macromolecules such as proteins and nucleic 

acids have been found as the main antibacterial functions of Ag 

nanoparticles.  Antisense RNA, a single-stranded RNA, can hybridize with 

complementary genes in messenger RNA (mRNA) followed by blockage 

translation of these genes into proteins. Moreover, CRISPR (clustered 

regularly interspaced short palindromic repeats) is a family of viral DNA 

sequences derived from bacteriophages, which can target and destroy 

foreign DNA by nuclease activity. There are 2 classes and 6 subtypes (I-

VI) of CRISPR-Cas systems, which may be engineered as potential 

antibacterial agents to target specific sequences. Therefore, here, recent 

advances and challenges for the antibacterial application of these three 

therapeutic agents are presented.    
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1. Introduction 

Infectious diseases are always a serious 
threat to the health of humans. According to 
the World Health Organization (WHO), there 
are a high proportion of antibiotic-resistant 
bacteria resulting from common infections 
such as urinary tract infections, pneumonia 
and bloodstream infections, and dire clinical 
requirements [1]. Ineffectiveness of the drug 
against infection means an increase in the rate 
of disability and death and imposes huge costs 
on the health sector [2]. Antibiotics are a 
valuable source of medicine employed to treat 
bacterial infections and their use in humans 
and animals is only allowed with the 
prescription of a physician and health experts 

and should be used in a full course of 
treatment. With the discovery of antibiotics, 
deaths from infectious diseases have been 
significantly reduced; however, with the 
misuse of antibiotics and resistance to them, 
these diseases are emerging [3-5]. 

Due to the increasing resistance to 
antibiotics, the world is in dire need of 
changing the pattern of consumption and 
prescribing this source of medications. If drug 
application remains the same, even the 
production and development of new drugs 
cannot prevent increased resistance to 
antibiotics. In addition to not using antibiotics 
arbitrarily, surveys are needed to reduce the 
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spread of infection through regular 
vaccinations, regular hand washing, and 
attention to food hygiene [6].  

 In fact, antimicrobial resistance is the 
resistance of a microorganism (including 
bacteria, fungi, viruses, and parasites) to 
antimicrobial drugs. When these 
microorganisms become resistant to 
antibacterial, antifungal, and antiviral drugs, 
standard drugs become ineffective, the 
infection remains in the body such as chronic 
diabetic foot ulcer, and it is not easily treated 
[7, 8]. The evolution of resistant strains is a 
natural phenomenon and occurs when 
microorganisms are mistakenly propagated or 
resistant traits are exchanged between 
several microorganisms. Frequent and 
inappropriate use of antibiotics is one of the 
main reasons for the increase in drug-
resistant bacteria [9].  

There is a plethora of strategies to inhibit 
antibiotic-resistant bacteria. We have 
presented three main antibacterial therapies 
based on antisense RNA, CRISPR-Cas9, and 
metal/metal oxide nanoparticles (NPs). 
Antisense RNA, a single-stranded RNA, can 
hybridize with complementary genes in 
messenger RNA (mRNA) followed by blockage 
translation of these genes into proteins [10]. 
mRNA degradation and translation inhibition 
via hybridizing with sequences flanking the 
ribosome binding site as well as the start 
codon of the mRNA are main routes for 
silencing target genes [11]. CRISPR (clustered 
regularly interspaced short palindromic 
repeats) is a family of viral DNA sequences 
derived from bacteriophages, which can 
target and destroy foreign DNA by nuclease 
activity (Figures 1a and b). There are 2 classes 
and 6 subtypes (I-VI) of CRISPR-Cas systems, 
which may be engineered as potential 
antibacterial agents to target specific 
sequences [12]. These palindromic repeats 
can be found as ~50% and ~90% in bacterial 
and archaeal genomes, respectively [13].  In 
the case of CRISPR-Cas9, the DNA sequences 
may be modified to silence bacterial virulence 
genes and bacterial resistance genes, which 
can be transferred to pathogenic bacteria by 
bacteriophages or plasmids [14].  It should be 
noted that this technology is in the preclinical 
phase and several companies such as Eligo 

Bioscience, Locus Biosciences, and Intellia 
Therapeutics are working on this type of 
therapy. Although phage capsids such as the 
temperate phage phiNM1 and the M13 phage 
were employed to deliver CRISPR 
antimicrobials, nevertheless, one main 
problem for using this technology is lacking 
efficient delivery systems with the ability to 
discriminate between pathogenic bacteria and 
other cells. [12, 15, 16].   

Recently, nanomaterials having specific 
properties (large surface area to volume ratio 
and aspect ratio) compared to bulk materials 
have shown excellent inactivation of 
microorganisms [17-19]. There are various 
methods for the fabrication of organic and 
inorganic nanomaterials, which can be 
functionalized in a smart way to target 
microorganisms [20-22]. For instance, natural 
sources such as plants, fungi, alga, lichens, 
bacteria, and bacteriophages having particular 
secondary metabolites can be used to modify 
organic and inorganic nanomaterials [23, 24]. 
Metal and metal oxide NPs encompassing 
silver, zinc oxide (ZnO), copper (Cu), and 
titanium dioxide (TiO2) have attained more 
attention to inactivate microorganisms 
specifically bacteria compared to other 
nanomaterials [25, 26]. Metal ion release from 
these NPs and production of reactive oxygen 
species (ROS) are considered as main 
antibacterial mechanisms [27, 28]. According 
to the above discussion, here, these three new 
strategies are presented to get a deep insight 
into future researches.  

2. Antisense RNA 

For inhibitor screening, essential proteins 
that are conserved among pathogens are 
considered suitable targets. The bacterial 
protein YidC (60-kDa) is critical for 
membrane protein translocation and insertion 
by its operation with the Sec machinery in 
eukaryotic organelles, archaea, and bacteria, 
which can be targeted for antibacterial 
therapy (Figure 1b) [29]. Downregulation of 
yidC in Escherichia coli was caused using the 
RNA silencing approach and 
eugenol/carvacrol essential oils treatment. By 
downregulation of this gene in E. coli, 
functions of cytochrome o oxidase, F1Fo 
ATPase, and proton-motive force are reduced 
[11]. In addition, hypersensitivity to specific 
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antibiotics may be caused by the 
incorporation of antisense RNA targeting the 
particular gene in bacteria species. For 
example, anthrax is a serious bacterial 
infection eventuated from rod-shaped, Gram-
positive bacteria of Bacillus anthracis, which 
can affect wild animals, domestic and humans. 
Hypersensitivity to beta-lactam antibiotics 
and MetS-particular antibacterial agents were 
found for B. anthracis under induced 
transcription of RNA from murB2 and metS1 
antisense-oriented genes related to enzymes 
of UDP-N-acetylenolpyruvoylglucosamine 
reductase and methionyl-tRNA synthetase, 
respectively [30].      

 

  
Fig. 1 (a) The crystal structure for CRISPR 
cascade bound to a single-stranded DNA 
target (PDB accession no.: 4QYZ), (b) The 
CRISPR can protect bacteria by a nuclease 
defense mechanism from repeated phage 
infections at two steps of 1) acquisition of 
phage sequences and 2) obtaining immunity 
against reinfection. (Licensed under the 
Creative Commons Attribution-Share Alike 4.0 
International license), and (c) YidC gene of E. 
coli (PDB accession no.: 3WFV).  

3. The modified CRISPR-Cas9  

Gram-positive round-shaped bacterium of 
Staphylococcus aureus can induce infections in 
soft and skin tissue (furuncles, cellulitis, and 
abscesses) and bone (osteomyelitis). As 
illustrated in Figure 2a, modified CRISPR-Cas9 

bacteriophage (delivering of ϕSaBov) may be 
prescribed for significant mitigation of the 
growth of S. aureus relative to untreated 
strains [31].  Formulation of this modified 
CRISPR-Cas9 by alginate hydrogel (at a 
concentration of 3% (w/v)) showed a biofilm 
reduction as separate fragments on 
orthopedic screws and bone after 8 days of 
treatment (Figures 2b and c) [32]. 
Enterococcus faecalis is a Gram-positive 
bacterium related to hospital-acquired 
infections, which can have antibiotic 
resistance genes. Pheromone-responsive 
plasmids as CRISPR-Cas-encoding delivery 
plasmids were engineered to target antibiotic 
resistance genes of ermB through conjugative 
delivery to combat erythromycin-resistant E. 
faecalis [33]. Moreover, targeted-
antibacterial-plasmids may be employed to 
deliver CRISPR-Cas systems with a strain-
specific antibacterial activity through 
bacterial conjugation [34].  

 

Fig. 2 (a) The CRISPR-Cas9 system (Cas9, 
CRISPR RNA (crRNA), and trans-activating 
crRNA (tracrRNA)) is expressed and scanned 
the PAM (protospacer adjacent motif) 
sequence followed by recognition of the target 
gene in the chromosomal bacterial DNA, 
leading to DNA cleavage [31]. (Licensed under 
a Creative Commons Attribution 4.0 
International License). (b) SEM micrographs 
of biofilm formation on the distal portion of 
orthopedic screws (c) and dispersed biofilm 
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of S. aureus under treatment by CRISPR-Cas9 
modified bacteriophage at eighth day [32] 
(Copyright: © 2019 under Creative Commons 
Attribution License).  

4. Metal and metal oxide NPs 

ROS generation, attachment to the cell 
membrane, disruption of bacterial envelop, 
inactivation of the electron transport chain, 
decreasing the local pH, modulation of cell 
signaling, and denaturation of biological 
macromolecules such as proteins and nucleic 
acids via oxidative stree (production of 
superoxide radical, hydroxyl radical, and 
hydrogen peroxide) have been found as major 
antibacterial functions of metal/metal oxide 
NPs especially AgNPs (Figure 3) [35]. The 
antibacterial mode for AgNPs was mainly 
dependent on the size and shape of NPs. For 
instance, smaller sizes (the size range of 5-10 
nm) of AgNPs have illustrated cell membrane 
damage and degradation of the bacterial 
chromosome. Attachment to the cellular 
envelope, penetration inside the bacteria and 
inactivation of respiration were indicated for 
sizes at the range of 20-25 nm, while NPs with 
90-100 nm have shown hindrance of 
metabolic pathways [35]. 

In the green synthesis (Figure 4), Surface 
modification of AgNPs with organic materials 
such as primary and secondary metabolites of 
living organisms including plants, fungi, alga, 
lichens and bacteria can synergize 
antibacterial and biocompatibility properties 
in vitro and in vivo. For example, there are 
various therapeutic activities such as 
antimicrobial, anticancer, anti-inflammatory 
and reduction of drug side effects for 
curcumin (C21H20O6; isolated from turmeric, 
Curcuma longa plant species) as herbal 
secondary metabolite [7, 36, 37]. This herbal 
drug or other phytochemicals such as 
polyphenols can neutralize the antibiotic-
resistance mechanisms and increase the 
antibacterial capacity of drugs [38]. As an 
example, a combination of curcumin with 
AgNPs showed lower cytotoxicity toward 
human normal fibroblast and a striking 
reduction of multidrug-resistant Pseudomonas 
aeruginosa under photodynamic therapy as a 
non-invasive antibacterial approach [39].   

 

Fig. 3 The main antibacterial mechanisms of 
AgNPs [35] (Copyright © 2016 under the 
terms of the Creative Commons Attribution 
License).  

 

Fig. 4 Biosynthesis methods for fabrication of 
various sizes and shapes of AgNPs in a one-
pot way [40] (Attribution-NonCommercial 3.0 
Unported (CC BY-NC 3.0)).  

5. Conclusion 

Finding new therapeutic approaches to 
fight antibiotic-resistant bacteria is a 
complicated affair in the therapy of bacterial 
infections specifically hospital-acquired 
infections. There is a plethora of approaches 
to inactivate pathogenic bacteria, which we 
have presented three main antibacterial 
therapies based on antisense RNA, CRISPR-
Cas9, and metal/metal oxide NPs. In the case 
of antisense RNA, essential proteins that are 
conserved among pathogens are considered 
suitable targets. In this regard, 
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hypersensitivity to specific antibiotics or 
other antibacterial agents such as herbal or 
bacterial metabolites may result from the 
incorporation of antisense RNAs targeting 
particular genes in pathogenic bacteria. For 
the CRISPR-Cas9 system, a significant 
reduction of soft tissue infection upon 
treatment of the modified CRISPR-Cas9 
bacteriophage was equal to fosfomycin 
antibiotic. It can be concluded that further 
study is required to determine the therapeutic 
efficacy of CRISPR systems as antibacterial 
agents. Lacking robust delivery systems is a 
major challenge in the application of CRISPR 
antimicrobials, which should be considered 
comprehensively in future investigations.  
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