Gene Expression Studies
Muhammed Furkan Ercisli; Gao Lechun; Sarhang Hasan Azeez; Rebwar Muhammad Hamasalih; Siyan Song; Zahra Aziziaram
Abstract
Rivaroxaban is an anticoagulant drug that prevents forming of blood clots. In addition, it can be administered to prevent and treat thrombotic diseases such as atrial fibrillation, cardiac arrhythmia, heart valve disease, orthopedic surgery, and thrombophilia to reduce the risk of thrombosis. Various ...
Read More
Rivaroxaban is an anticoagulant drug that prevents forming of blood clots. In addition, it can be administered to prevent and treat thrombotic diseases such as atrial fibrillation, cardiac arrhythmia, heart valve disease, orthopedic surgery, and thrombophilia to reduce the risk of thrombosis. Various factors such as age, gender, diet, medications, and genetic factors effectively determine the dose of rivaroxaban. Genetic variability in drug-metabolizing enzymes, including the cytochrome P450 (CYP450) enzymes and especially CYP3A4, has been associated with rivaroxaban response. The current study aimed to identify the frequency of CYP3A4 common polymorphisms, as well as their association with rivaroxaban response in 100 patients of Arab descent (48.6% female). CYP3A4 gene polymorphisms were examined by the PCR-RFLP method, and the findings were analyzed by SPSS 16 software and t-test. The frequency of CYP3A4*1B/*1B, CYP3A4*1B/*1A, CYP3A4*1B/*1C, and CYP3A4*1A/*1C was 67.35%, 10.64%, 19.12% and 2.89%, respectively. According to our results, CYP3A4 *1B/*1B genotype was the most common, and patients with CYP3A4*1B/*1B alleles needed a higher daily dose of rivaroxaban than *1B/*1A, *1B/*1C, and *1A/*1C carriers (9.57 ± 1.54 mg/day, P=0.015). Therefore, according to the results, CYP3A4 gene polymorphism has an important effect on the dose of rivaroxaban required to maintain the International Normalized Ratio (INR) in the range of 2-3.

Cell, Organ and Tissue Culture
Sarhang Hasan Azeez; Sarwar Nawzad Jafar; Zahra Aziziaram; Le Fang; Ahang Hasan Mawlood; Muhammed Furkan Ercisli
Abstract
Recently, stem cells have been considered renewable cell sources in the treatment of diabetes and the development of insulin-producing cells. In this regard, the current study aimed to compare Insulin-producing cells from bone marrow stem cells with injectable insulin in rats with type I diabetes. For ...
Read More
Recently, stem cells have been considered renewable cell sources in the treatment of diabetes and the development of insulin-producing cells. In this regard, the current study aimed to compare Insulin-producing cells from bone marrow stem cells with injectable insulin in rats with type I diabetes. For this purpose, 40 rats were divided into four groups: the control or healthy group, the diabetic control group, the group that received differentiated insulin-producing cells from bone marrow, and the group that received insulin treatment. To differentiate insulin-producing cells from bone marrow, the femoral bone marrow of rats was extracted using the flushing method. Differentiated cells were evaluated using dithizone-specific dye, anti-insulin-proinsulin antibodies, and anti-insulin beta receptors. Also, the expression of the pdx-I gene, as the specific gene of pancreatic cells, was examined by RT-PCR. The results showed that transplantation of insulin-producing cells could significantly increase blood insulin levels in diabetic rats. This increase intensified in the second stage of transplantation when more cells were injected into rats. Concerning decreasing blood sugar levels, differentiated cells were able to reduce blood sugar levels significantly. Even in the first stage of cell injection, in which the rats received a small number of cells, their blood sugar levels were controlled by these cells. As a result, the present study showed that repeated transplants of insulin-producing cells differentiated from bone marrow could decrease blood sugar and increase insulin levels.
